• Title/Summary/Keyword: Liver Alcohol dehydrogenase and Aldehyde dehydrogenase

Search Result 65, Processing Time 0.023 seconds

The Extract of Limonium tetragonum Protected Liver against Acute Alcohol Toxicity by Enhancing Ethanol Metabolism and Antioxidant Enzyme Activities

  • Kim, Na-Hyun;Sung, Sang Hyun;Heo, Jeong-Doo;Jeong, Eun Ju
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.54-58
    • /
    • 2015
  • The protective effect of EtOAc fraction of Limonium tetragonum extract (EALT) against alcohol-induced hepatotoxicity was assessed following acute ethanol intoxication in Spraque-Dawley rats. EALT (200 mg/kg p.o.) was administrated once before alcohol intake (8 g/kg, p.o.). Blood ethanol concentration, and the activities of alcohol metabolic enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the liver were measured. Also, the formation of malondialdehyde (MDA) and the activities of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-px), catalase were determined after acute alcohol exposure. Pretreatment of rats received ethanol with EALT significantly decreased blood ethanol concentration and elevated the activities of ADH and ALDH in liver. The increased MDA level was decreased, and the reduced activities of SOD, GSH-px and catalase were markedly preserved by the treatment with EALT. This study suggests that EALT prevent hepatic injury induced by acute alcohol which is likely related to its modulation on the alcohol metabolism and antioxidant enzymes activities.

Aliphatic and Allyl Alcohol-Induced Liver Cell Toxicity and its Detoxification

  • Park, Su-Kyung;Lee, Wan-Koo;Park, Young-Hoon;Moon, Jeon-Ok
    • Toxicological Research
    • /
    • v.14 no.2
    • /
    • pp.157-161
    • /
    • 1998
  • The mechanism of active aldehyde-induced liver disease and the enzymatic basis of detoxification were investigated using normal rat liver cell, Ac2F. Aliphatic alcohols including l-decyl alcohol, l-nonanol, l-heptanol, l-hexanol, l-propanol and allyl alcohol exerted a dose- and time-de-pendent toxicity to Ac2F cells. The extent of their toxicities in buthionine sulfoximine (inhibitor of glutathione synthesis) pretreated cells was greater than in pargyline (inhibitor of aldehyde dehydrogenase, ALDH). On the other hand, the toxicity of these alcohols were not affected by 4-methylpyrazole (inhibitor of alcohol dehydrogenase, ADH). These results suggest that the contents of glutathione (GSH) seems to be very important in protecting the cells from toxicants such as aliphatic alcohols.

  • PDF

Anti-Alcohol and Anti-Aldehyde Hangover Effect of Aldehyde Dehydrogenase Related Compounds in Rat (랫드에서 Aldehyde Dehydrogenase Related Compounds의 알콜 및 알데히드 분해 효능평가)

  • Hye-Jeong Sin;Se-Young Choung;Sora Kang;Hung-Taeck Kwon;Bae-Hwan Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.99-107
    • /
    • 2023
  • Background: Excessive alcohol consumption is at the root of serious social problems such as hangovers, liver dysfunction, and alcoholism. Objectives: This study was carried out to determine the hangover ameliorating effect of fermented rice extract and a combination of yeast-fermented powder and lysate containing aldehyde dehydrogenase (ALDH) (improved new ingredients) in an ethanol-induced rat study. Methods: The concentrations of alcohol, acetaldehyde, and malondialdehye in serum were evaluated to assess the anti-alcohol and anti-aldehyde hangover effect in two experiments, one with fermented rice extract) and a second with yeast-fermented powder and lysate, using animal studies. Results: Experiment 2 with yeast-fermented powder and lysate containing ALDH showed similar and higher activity, respectively, in reducing ethanol and acetaldehyde concentration compared with Experiment 1 with fermented rice extract. Experiment 2 also significantly reduced malondialdehyde, a type of lipid peroxide. The ALDH-related compound (ARC) lysate showed better hangover relief effect than ARC powder. Conclusions: These results indicate that ALDH-related compounds exhibit a hangover relief effect, and fermented lysate is considered to be a better candidate for hangover relief.

Effect of Fermented Blackberry Drinks Formed from Radiation-induced Mutant on Alcohol Metabolism and Hangover in Rats (방사선 유도 돌연변이체 블랙베리 발효음료의 알코올 대사 및 숙취 억제 효과)

  • Cho, Byoung Ok;So, Yangkang;Lee, Chang Wook;Cho, Jung Keun;Woo, Hyun Sim;Jin, Chang Hyun;Jeong, Il Yun
    • Journal of Radiation Industry
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2013
  • This study was designed to elucidate the effect of fermented blackberry drinks (BD) on alcohol metabolism and hangover in alcohol-treated rats. We showed that the administration of BD increased the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in alcohol-treated rats. Moreover, the administration of BD reduced the serum alcohol and acetaldehyde concentrations in alcohol-treated rats. Furthermore, the administration of BD attenuated the levels of serum aspartate aminotransferase and alanine aminotransferase in alcohol-treated rats. Taken together, these results suggest that BD plays an important role in alcohol metabolism and liver function by reducing blood alcohol and acetaldehyde through the activation of ADH and ALDH in alcohol-treated rats and could be used as a functional anti-hangover drinks.

Aqueous extract of Laurus nobilis leaf accelerates the alcohol metabolism and prevents liver damage in single-ethanol binge rats

  • Jae In Jung;Yean-Jung Choi;Jinhak Kim;Kwang-Soo Baek;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1113-1127
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Excessive alcohol consumption has harmful health effects, including alcohol hangovers and alcohol-related liver disease. Therefore, methods to accelerate the alcohol metabolism are needed. Laurus nobilis is a spice, flavoring agent, and traditional herbal medicine against various diseases. This study examined whether the standardized aqueous extract of L. nobilis leaves (LN) accelerates the alcohol metabolism and protects against liver damage in single-ethanol binge Sprague-Dawley (SD) rats. MATERIALS/METHODS: LN was administered orally to SD rats 1 h before ethanol administration (3 g/kg body weight [BW]) at 100 and 300 mg/kg BW. Blood samples were collected 0.5, 1, 2, and 4 h after ethanol administration. The livers were excised 1 h after ethanol administration to determine the hepatic enzyme activity. The alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in the liver tissue were measured. RESULTS: LN decreased the serum ethanol and acetaldehyde levels in ethanol-administered rats. LN increased the hepatic ADH and ALDH activities but decreased the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase activities in the ethanol-administered rats. In addition, LN inhibited lipid peroxidation and increased the activities of SOD and GPx. CONCLUSIONS: LN modulates the mediators of various etiological effects of excessive alcohol consumption and enhances the alcohol metabolism and antioxidant activity, making it a potential candidate for hangover treatments.

Comparison of silkworm powder from 3 Bombyx mori varieties on alcohol metabolism in rats

  • Lee, Da-Young;Cho, Jae-Min;Yun, Sun-Mi;Hong, Kyung-Sook;Ji, Sang-Deok;Son, Jong-Gon;Kim, Eun-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.35 no.1
    • /
    • pp.22-29
    • /
    • 2017
  • Increased alcohol consumption is a burden on the world because it is associated with various health problems. However, the effects of silkworms on alcohol metabolism have not been studied yet. The hard-to-eat mature silkworms have become easier to ingest recently due to the development of technology, steam-lyophilising mature silkworm larvae. In this study, we investigated and compared the effects of SMSPs from three silkworm varieties, Baekokjam, Golden-silk and Yeonnokjam weaving white, golden, and light green cocoons on alcohol metabolism in vivo. Sprague-Dawley rats pretreated with three SMSPs (0.1 g/kg or 1 g/kg body weight) or normal diet (AIN-76A) for 2 weeks were subjected to intragastric administration of absolute ethanol (3 g/kg body weight, 3 h). Three SMSPs did not affect the final body weight and liver weight. All 3 SMSPs were effective to reduce the enzymes in alcohol metabolism, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), and liver damage and enzymes involved in liver damage, aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Among SMSP from 3 varieties of silkworm, preadministration of 1 g/kg Baekokjam SMSP showed the most effective suppressive effect on the activities of ADH, ALDH, AST and ALT. The Baekokjam SMSP contained higher amounts of beneficial amino acids than Golden-silk or Yeonnokjam SMSP. These results suggest that Baekokjam SMSP might be used as a new and promising candidate for improving alcohol metabolism and liver injury through promoting rapid alcohol metabolism.

Cross-Linked Enzyme Crystal(CLEC);Stability of Horse Liver Alcohol Dehydrogenase CLEC against Electron Transfer Mediators (격자화 효소결정;전자이동 중개체에 대한 알콜 탈수소격자화 효소결정의 안정도)

  • Lee, Kang Min
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.1
    • /
    • pp.61-66
    • /
    • 2001
  • Stabilized Cross-linking Enzyme Crystals(CLEC) can be used as not only biocatalysts but also as enzyme sensors. PMS(Phenylmethyl Sulfate)was shown more efficience than any other electron mediator transfers toward HLADH(Horse Liver Alcohol Dehydrogenase)that were examined. NQS(naphtoquinonesulphonate), phenothiazine and ferrocene aldehyde had respectively just 52%, 37%, 35% electron transfer efficiency as compared to PMS . HLADH-CLEC was very stable toward elctron transfer mediators such as PMS, NQS and ferrocene aldehyde in which HLADH-solution was unstable.

  • PDF

GABA-enriched Fermented Laminaria japonica Protects against Alcoholic Hepatotoxicity in Sprague-Dawley Rats

  • Cha, Jae-Young;Lee, Bae-Jin;Je, Jae-Young;Kang, Young-Mi;Kim, Young-Mog;Cho, Young-Su
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.79-88
    • /
    • 2011
  • The sea tangle, Laminaria japonica has long been used in Korea as a folk remedy to promote health. Gamma-amino butyric acid-enriched (5.56% of dry weight) sea tangle was obtained by fermentation with Lactobacillus brevis BJ-20 (FLJ). A suppressive effect of FLJ on carbon tetrachloride-induced hepatotoxicity has been shown previously. Alcohol administration to Sprague-Dawley rats leads to hepatotoxicity, as demonstrated by heightened levels of hepatic marker enzymes as well as increases in both the number and volume of lipid droplets as fatty liver progresses. However, FLJ attenuated alcohol-induced hepatotoxicity and the accumulation of lipid droplets following ethanol administration. Additionally, FLJ increased the activities and transcript levels of major alcoholmetabolizing enzymes, such as alcohol dehydrogenase and aldehyde dehydrogenase, and reduced blood concentrations of alcohol and acetaldehyde. These data suggest that FLJ protects against alcohol-induced hepatotoxicity and that FLJ could be used as an ingredient in functional foods to ameliorate the effects of excessive alcohol consumption.

Effect of Ginseng on the Alcohol Metabolism in Alcohol Treated Rat (알톨 대사에 미치는 인삼의 영향)

  • Huh, Keun;Choi, Chong-Won
    • YAKHAK HOEJI
    • /
    • v.28 no.1
    • /
    • pp.49-51
    • /
    • 1984
  • After pretreatment with ginseng followed by induction of acute intoxication of alcohol, the activities of alcohol dehydrogenase (ADH), microsomal ethanol-oxidizing system (MEOS) and aldehyde dehydrogenase(Ald DH) increased respectively compared to the groups treated with alcohol alone. In case that ginseng was given to rats fed with 5% alcohol instead of water for 60 days, the activities of ADH and MEOS increased compared to the groups treated. On the contrary, the activity of Ald DH in mitochondrial fraction decreased to an extent of about 35% in chronic alcoholism, but after pretreatment of ginseng the activity was restored to the control level. On the other hand, the catalase activity was not significantly affected by either treatment. Ginseng butanol fraction significantly increased the serum isocitrate dehydrogenase activity which is inhibited by alcohol-treated in rat. Alcohol-induced lactate dehydrogenase activity was decreased to control level in liver by ginseng treatment. And the serum level of lactic acid also decreased by ginseng treatment in alcohol-intoxicated rat. Ginseng butanol fraction markedly decreased the xanthine oxidase activity in the ethanol-treated rat liver. It was also observed that ginseng reduced the blood concentration of uric acid on experimentally reduced hyperuricemia by alcohol treatment. Uricase activity was not affected by either treatment. Ginseng butanol fraction decreased the hepatic aniline hydroxylase activity which was induced by alcohol-treated rat. These results suggest that the treatment with ginseng can be promoted the recovery from alcohol intoxication and some therapeutic effect on alcoholinduced metabolic disease.

  • PDF

(-) Epigallocatechin gallate restores ethanol-induced alterations in hepatic detoxification system and prevents apoptosis

  • Anuradha, Carani V;Kaviarasan, Subramanian
    • Advances in Traditional Medicine
    • /
    • v.7 no.3
    • /
    • pp.311-320
    • /
    • 2007
  • The present study was designed to estimate the protective effect of (-) epigallocatechin gallate (EGCG) on ethanol-induced liver injury in rats. Chronic ethanol administration (6 g/kg/day ${\times}$ 60 days) caused liver damage that was manifested by the elevation of markers of liver dysfunction - aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, bilirubin and ${\gamma}$-glutamyl transferase in plasma and reduction in liver glycogen. The activities of alcohol metabolizing enzymes such as alcohol dehydrogenase and aldehyde dehydrogenase were found to be altered in alcohol-treated group. Ethanol administration resulted in the induction of cytochrome p450 and cytochrome-$b_{5}$ activities and reduction of cytochrome-c reductase and glutathione-S-transferase, a phase II drug metabolizing enzyme. Further, ethanol reduced the viability of isolated hepatocytes (ex vivo) as assessed by trypan blue exclusion test and induced hepatocyte apoptosis as assessed by propidium iodide staining. Treatment of alcoholic rats with EGCG restored the levels of markers of liver injury and mitigated the alterations in alcohol metabolizing and drug metabolizing enzymes and cyt-c-reductase. Increased hepatocyte viability and reduced apoptotic nuclei were observed in alcohol + EGCG-treated rats. These findings suggest that EGCG acts as a hepatoprotective agent against alcoholic liver injury.