DOI QR코드

DOI QR Code

Aqueous extract of Laurus nobilis leaf accelerates the alcohol metabolism and prevents liver damage in single-ethanol binge rats

  • Jae In Jung (Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University) ;
  • Yean-Jung Choi (Department of Food and Nutrition, Sahmyook University) ;
  • Jinhak Kim (R&D Division, Daehan Chemtech Co. Ltd.) ;
  • Kwang-Soo Baek (R&D Division, Daehan Chemtech Co. Ltd.) ;
  • Eun Ji Kim (Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University)
  • Received : 2023.06.05
  • Accepted : 2023.09.08
  • Published : 2023.12.01

Abstract

BACKGROUND/OBJECTIVES: Excessive alcohol consumption has harmful health effects, including alcohol hangovers and alcohol-related liver disease. Therefore, methods to accelerate the alcohol metabolism are needed. Laurus nobilis is a spice, flavoring agent, and traditional herbal medicine against various diseases. This study examined whether the standardized aqueous extract of L. nobilis leaves (LN) accelerates the alcohol metabolism and protects against liver damage in single-ethanol binge Sprague-Dawley (SD) rats. MATERIALS/METHODS: LN was administered orally to SD rats 1 h before ethanol administration (3 g/kg body weight [BW]) at 100 and 300 mg/kg BW. Blood samples were collected 0.5, 1, 2, and 4 h after ethanol administration. The livers were excised 1 h after ethanol administration to determine the hepatic enzyme activity. The alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities in the liver tissue were measured. RESULTS: LN decreased the serum ethanol and acetaldehyde levels in ethanol-administered rats. LN increased the hepatic ADH and ALDH activities but decreased the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase activities in the ethanol-administered rats. In addition, LN inhibited lipid peroxidation and increased the activities of SOD and GPx. CONCLUSIONS: LN modulates the mediators of various etiological effects of excessive alcohol consumption and enhances the alcohol metabolism and antioxidant activity, making it a potential candidate for hangover treatments.

Keywords

References

  1. Verster JC, Scholey A, van de Loo AJ, Benson S, Stock AK. Updating the definition of the alcohol hangover. J Clin Med 2020;9:823.
  2. Wiese JG, Shlipak MG, Browner WS. The alcohol hangover. Ann Intern Med 2000;132:897-902. https://doi.org/10.7326/0003-4819-132-11-200006060-00008
  3. Gyamfi MA, Wan YJ. Pathogenesis of alcoholic liver disease: the role of nuclear receptors. Exp Biol Med (Maywood) 2010;235:547-60. https://doi.org/10.1258/ebm.2009.009249
  4. Jiang Y, Zhang T, Kusumanchi P, Han S, Yang Z, Liangpunsakul S. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease. Biomedicines 2020;8:50.
  5. Mackus M, Loo AJ, Garssen J, Kraneveld AD, Scholey A, Verster JC. The role of alcohol metabolism in the pathology of alcohol hangover. J Clin Med 2020;9:3421.
  6. Niemela O, Parkkila S, Yla-Herttuala S, Villanueva J, Ruebner B, Halsted CH. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease. Hepatology 1995;22:1208-14. https://doi.org/10.1016/0270-9139(95)90630-4
  7. Kang KK, Seo MS, Sung SE, Choi JH, Lee S, Kim K, Jang W, Lee HS. Effects of Raphanus sativus var. niger (black radish) fermented with Lactobacillus plantarum on alcohol metabolism in rats. Food Suppl Biomater Health 2021;1:e22.
  8. Palmer E, Tyacke R, Sastre M, Lingford-Hughes A, Nutt D, Ward RJ. Alcohol Hangover: underlying biochemical, inflammatory and neurochemical mechanisms. Alcohol Alcohol 2019;54:196-203. https://doi.org/10.1093/alcalc/agz016
  9. Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J Gastroenterol 2014;20:17756-72. https://doi.org/10.3748/wjg.v20.i47.17756
  10. Wang F, Li Y, Zhang YJ, Zhou Y, Li S, Li HB. Natural products for the prevention and treatment of hangover and alcohol use disorder. Molecules 2016;21:64.
  11. Jayawardena R, Thejani T, Ranasinghe P, Fernando D, Verster JC. Interventions for treatment and/or prevention of alcohol hangover: systematic review. Hum Psychopharmacol 2017;32:e2600.
  12. Pittler MH, Ernst E. Systematic review: hepatotoxic events associated with herbal medicinal products. Aliment Pharmacol Ther 2003;18:451-71. https://doi.org/10.1046/j.1365-2036.2003.01689.x
  13. dela Pena IJ, dela Pena JB, Yoon SY, Kim HJ, Lee JH, Paek SH, et al. Supplementation of Laurus nobilis attenuate ethanol-induced psychomotor alterations in rats. Nat Prod Sci 2014;20:44-50. 
  14. Simic M, Kundakovic T, Kovacevic N. Preliminary assay on the antioxidative activity of Laurus nobilis extracts. Fitoterapia 2003;74:613-6. https://doi.org/10.1016/S0367-326X(03)00143-6
  15. Dadalioglu I, Evrendilek GA. Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J Agric Food Chem 2004;52:8255-60. https://doi.org/10.1021/jf049033e
  16. Ferreira A, Proenca C, Serralheiro ML, Araujo ME. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol 2006;108:31-7. https://doi.org/10.1016/j.jep.2006.04.010
  17. Dhifi W, Bellili S, Jazi S, Nasr SB, El-Beyrouthy M, Mnif W. Phytochemical composition and antioxidant activity of Tunisian Laurus nobilis. Pak J Pharm Sci 2018;31:2397-402.
  18. Lee EH, Shin JH, Kim SS, Lee H, Yang SR, Seo SR. Laurus nobilis leaf extract controls inflammation by suppressing NLRP3 inflammasome activation. J Cell Physiol 2019;234:6854-64. https://doi.org/10.1002/jcp.27434
  19. Bouadid I, Amssayef A, Eddouks M. Study of the anti-hypertensive effect of Laurus nobilis in rats. Cardiovasc Hematol Agents Med Chem 2023;21:42-54. https://doi.org/10.2174/1871525720666220512154041
  20. Mohammed RR, Omer AK, Yener Z, Uyar A, Ahmed AK. Biomedical effects of Laurus nobilis L. leaf extract on vital organs in streptozotocin-induced diabetic rats: Experimental research. Ann Med Surg (Lond) 2020;61:188-97. https://doi.org/10.1016/j.amsu.2020.11.051
  21. Qnais EY, Abdulla FA, Kaddumi EG, Abdalla SS. Antidiarrheal activity of Laurus nobilis L. leaf extract in rats. J Med Food 2012;15:51-7. https://doi.org/10.1089/jmf.2011.1707
  22. Marza Hamza N, Malik Yasir S, Abdulsajjad M Hussain K. Biological effects of aqueous extract of Laurus noboilis L. leaves on some histological and immunological parameters in male rat liver affected by aluminum chloride. Arch Razi Inst 2021;76:1745-53.
  23. Matsuda H, Shimoda H, Ninomiya K, Yoshikawa M. Inhibitory mechanism of costunolide, a sesquiterpene lactone isolated from Laurus nobilis, on blood-ethanol elevation in rats: involvement of inhibition of gastric emptying and increase in gastric juice secretion. Alcohol Alcohol 2002;37:121-7. https://doi.org/10.1093/alcalc/37.2.121
  24. Dobroslavic E, Repajic M, Dragovic-Uzelac V, Elez Garofulic I. Isolation of Laurus nobilis leaf polyphenols: a review on current techniques and future perspectives. Foods 2022;11:235.
  25. Paparella A, Nawade B, Shaltiel-Harpaz L, Ibdah M. A review of the botany, volatile composition, biochemical and molecular aspects, and traditional uses of Laurus nobilis. Plants 2022;11:1209.
  26. Yoshikawa M, Shimoda H, Uemura T, Morikawa T, Kawahara Y, Matsuda H. Alcohol absorption inhibitors from bay leaf (Laurus nobilis): structure-requirements of sesquiterpenes for the activity. Bioorg Med Chem 2000;8:2071-7. https://doi.org/10.1016/S0968-0896(00)00127-9
  27. Tinoco MT, Ramos P, Candeias MF. Effects of a hexane extract from Laurus novocanariensis leaves on the ethanol metabolism of Wistar rats. Fitoterapia 2009;80:130-3.  https://doi.org/10.1016/j.fitote.2008.12.003
  28. Medeiros-Fonseca B, Mestre VF, Colaco B, Pires MJ, Martins T, Gil da Costa RM, Neuparth MJ, Medeiros R, Moutinho MS, Dias MI, et al. Laurus nobilis (laurel) aqueous leaf extract's toxicological and anti-tumor activities in HPV16-transgenic mice. Food Funct 2018;9:4419-28. https://doi.org/10.1039/C8FO00783G
  29. Vidal F, Toda R, Gutierrez C, Broch M, Fernandez-Muixi F, Lorenzo A, Richart C. Influence of chronic alcohol abuse and liver disease on hepatic aldehyde dehydrogenase activity. Alcohol 1998;15:3-8. https://doi.org/10.1016/S0741-8329(97)00073-6
  30. Mackus M, van de Loo AJ, Garssen J, Kraneveld AD, Scholey A, Verster JC. The association between ethanol elimination rate and hangover severity. Int J Environ Res Public Health 2020;17:4324.
  31. Contreras-Zentella ML, Villalobos-Garcia D, Hernandez-Munoz R. Ethanol metabolism in the liver, the induction of oxidant stress, and the antioxidant defense system. Antioxidants (Basel) 2022;11:1258.
  32. Yang Z, Gao Y, Wu W, Mu H, Liu R, Fang X, Gao H, Chen H. The mitigative effect of lotus root (Nelumbo nucifera Gaertn) extract on acute alcoholism through activation of alcohol catabolic enzyme, reduction of oxidative stress, and protection of liver function. Front Nutr 2023;9:1111283.
  33. Kang HW, Yu KW, Jun WJ, Chang IS, Han SB, Kim HY, Cho HY. Isolation and characterization of alkyl peroxy radical scavenging compound from leaves of Laurus nobilis. Biol Pharm Bull 2002;25:102-8. https://doi.org/10.1248/bpb.25.102
  34. Lee HY, Lee GH, Hoang TH, Kim SW, Kang CG, Jo JH, Chung MJ, Min K, Chae HJ. Turmeric extract (Curcuma longa L.) regulates hepatic toxicity in a single ethanol binge rat model. Heliyon 2022;8:e10737.
  35. Lee S, Lee J, Lee H, Sung J. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. J Food Biochem 2019;43:e13002.
  36. Lee HJ, Saravana PS, Ho TC, Cho YJ, Park JS, Lee SG, Chun BS. In vivo protective effect against ethanol metabolism and liver injury of oyster (Crassostrea gigas) extracts obtained via subcritical water processing. Food Sci Biotechnol 2021;30:1063-74. https://doi.org/10.1007/s10068-021-00941-9
  37. Kitakaze T, Inoue M, Ashida H. Aged garlic extract prevents alcohol-induced cytotoxicity through induction of aldehyde dehydrogenase 2 in the liver of mice. Mol Nutr Food Res 2023;67:e2200627.
  38. Wu D, Cederbaum A. Glutathione depletion in CYP2E1-expressing liver cells induces toxicity due to the activation of p38 mitogen-activated protein kinase and reduction of nuclear factor-κB DNA binding activity. Mol Pharmacol 2004;66:749-60. https://doi.org/10.1124/mol.104.002048
  39. Ali H, Assiri MA, Shearn CT, Fritz KS. Lipid peroxidation derived reactive aldehydes in alcoholic liver disease. Curr Opin Toxicol 2019;13:110-7. https://doi.org/10.1016/j.cotox.2018.10.003
  40. Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 2009;83:519-48. https://doi.org/10.1007/s00204-009-0432-0
  41. Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab J Gastroenterol 2018;19:56-64. https://doi.org/10.1016/j.ajg.2018.03.002
  42. De Minicis S, Brenner DA. Oxidative stress in alcoholic liver disease: role of NADPH oxidase complex. J Gastroenterol Hepatol 2008;23 Suppl 1:S98-103. https://doi.org/10.1111/j.1440-1746.2007.05277.x
  43. Cederbaum AI. Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J Gastroenterol Hepatol 2006;21 Suppl 3:S22-5. https://doi.org/10.1111/j.1440-1746.2006.04595.x
  44. Wang F, Zhang YJ, Zhou Y, Li Y, Zhou T, Zheng J, Zhang JJ, Li S, Xu DP, Li HB. Effects of beverages on alcohol metabolism: Potential health benefits and harmful impacts. Int J Mol Sci 2016;17:354.
  45. Lee JY, An YJ, Kim JW, Choi HK, Lee YH. Effect of Angelica keiskei Koidzumi extract on alcohol-induced hepatotoxicity in vitro and in vivo. J Korean Soc Food Sci Nutr 2016;45:1391-7. https://doi.org/10.3746/jkfn.2016.45.10.1391
  46. Li BY, Li HY, Zhou DD, Huang SY, Luo M, Gan RY, Mao QQ, Saimaiti A, Shang A, Li HB. Effects of different green tea extracts on chronic alcohol induced-fatty liver disease by ameliorating oxidative stress and inflammation in mice. Oxid Med Cell Longev 2021;2021:5188205.
  47. Li HY, Gan RY, Shang A, Mao QQ, Sun QC, Wu DT, Geng F, He XQ, Li HB. Plant-based foods and their bioactive compounds on fatty liver disease: effects, mechanisms, and clinical application. Oxid Med Cell Longev 2021;2021:6621644.
  48. Li S, Gan LQ, Li SK, Zheng JC, Xu DP, Li HB. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity. Food Funct 2014;5:42-9. https://doi.org/10.1039/C3FO60282F
  49. Manir MM, Kim JK, Lee BG, Moon SS. Tea catechins and flavonoids from the leaves of Camellia sinensis inhibit yeast alcohol dehydrogenase. Bioorg Med Chem 2012;20:2376-81. https://doi.org/10.1016/j.bmc.2012.02.002
  50. Yamashita H, Goto M, Matsui-Yuasa I, Kojima-Yuasa A. Ecklonia cava polyphenol has a protective effect against ethanol-induced liver injury in a cyclic AMP-dependent manner. Mar Drugs 2015;13:3877-91. https://doi.org/10.3390/md13063877