• Title/Summary/Keyword: Lithium-ion battery RUL

Search Result 8, Processing Time 0.026 seconds

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Large Language Model-based SHAP Analysis for Interpretation of Remaining Useful Life Prediction of Lithium-ion Battery (거대언어모델 기반 SHAP 분석을 이용한 리튬 이온 배터리 잔존 수명 예측 기법 해석)

  • Jaeseung Lee;Jehyeok Rew
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.5
    • /
    • pp.51-68
    • /
    • 2024
  • To safely operate lithium-ion batteries that power mobile electronic devices, it is crucial to accurately predict the remaining useful life (RUL) of the battery. Recently, with the advancement of machine learning technologies, artificial intelligence (AI)-based RUL prediction models for batteries have been actively researched. However, existing models have limitations as the reasoning process within the models is not transparent, making it difficult to fully trust and utilize the predicted values derived from machine learning. To address this issue, various explainable AI techniques have been proposed, but these techniques typically visualize results in the form of graphs, requiring users to manually analyze the graphs. In this paper, we propose an explainable RUL prediction method for lithium-ion batteries that interprets the reasoning process of the prediction model in textual form using SHAP analysis based on large language models (LLMs). Experimental results using publicly available lithium-ion battery datasets demonstrated that the LLM-based SHAP analysis enabled us to concretely understand the model's prediction rationale in textual form.

Internal parameter comparative analysis for the RUL of high-power lithium-ion battery (고출력 리튬이온 배터리의 RUL을 위한 내부 파라미터 변화 비교분석)

  • Kim, Y.S;kim, J.H;Lee, P.Y;Jang, M.H
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.311-312
    • /
    • 2016
  • 본 논문에서는 사이즈가 다른 고출력 원통형 리튬이온 배터리의 Remaining Useful Life(RUL)을 방전용량 기반으로 전기적 특성분석을 실시하였다. 우선, 배터리의 충/방전이 계속될 시 용량이 어떻게 변화하는지 실험해보았으며, 만충 전압(Fully Charged)에서 만방 전압(Fully Discharged) 까지의 각각의 State-Of-Charge(SOC)에서 Hybrid Pulse Power Characterization (HPPC) Test를 이용해 충전 저항과 방전 저항을 구하여, 용량과 저항의 관계를 파악하였으며, 배터리 RUL을 알기 위한 기본 정보를 확보했다.

  • PDF

Deep Learning Approaches to RUL Prediction of Lithium-ion Batteries (딥러닝을 이용한 리튬이온 배터리 잔여 유효수명 예측)

  • Jung, Sang-Jin;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.21-27
    • /
    • 2020
  • Lithium-ion batteries are the heart of energy-storing devices and electric vehicles. Owing to their superior qualities, such as high capacity and energy efficiency, they have become quite popular, resulting in an increased demand for failure/damage prevention and useable life maximization. To prevent failure in Lithium-ion batteries, improve their reliability, and ensure productivity, prognosticative measures such as condition monitoring through sensors, condition assessment for failure detection, and remaining useful life prediction through data-driven prognostics and health management approaches have become important topics for research. In this study, the residual useful life of Lithium-ion batteries was predicted using two efficient artificial recurrent neural networks-ong short-term memory (LSTM) and gated recurrent unit (GRU). The proposed approaches were compared for prognostics accuracy and cost-efficiency. It was determined that LSTM showed slightly higher accuracy, whereas GRUs have a computational advantage.

Remaining Useful Life of Lithium-Ion Battery Prediction Using the PNP Model (PNP 모델을 이용한 리튬이온 배터리 잔존 수명 예측)

  • Jeong-Gu Lee;Gwi-Man Bak;Eun-Seo Lee;Byung-jin Jin;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1151-1156
    • /
    • 2023
  • In this paper, we propose a deep learning model that utilizes charge/discharge data from initial lithium-ion batteries to predict the remaining useful life of lithium-ion batteries. We build the DMP using the PNP model. To demonstrate the performance of DMP, we organize DML using the LSTM model and compare the remaining useful life prediction performance of lithium-ion batteries between DMP and DML. We utilize the RMSE and RMSPE error measurement methods to evaluate the performance of DMP and DML models using test data. The results reveal that the RMSE difference between DMP and DML is 144.62 [Cycle], and the RMSPE difference is 3.37 [%]. These results indicate that the DMP model has a lower error rate than DML. Based on the results of our analysis, we have showcased the superior performance of DMP over DML. This demonstrates that in the field of lithium-ion batteries, the PNP model outperforms the LSTM model.

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial (배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술)

  • Choi, Yohwan;Kim, Hongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.939-949
    • /
    • 2017
  • Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation (ESS 잔존수명 추정 모델 경량화 연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.436-442
    • /
    • 2020
  • ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.