Mass production-capable $Li_2MnSiO_4$ powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably $Li_xSiO_x$. Lastly, carbon was coated on $Li_2MnSiO_4$ powders by using sucrose to afford some improved electrical conductivity. The carbon-coated $Li_2MnSiO_4$ cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.
As a significant technology in the smartization era promoted by the Fourth Industrial Revolution, the secondary battery industry has recently attracted significant attention. The demand for lithium-ion batteries (LIBs), which exhibit excellent performance, is considerably increasing in different industrial fields. During the manufacturing process of LIBs, it is necessary to join the cathode and anode sheets with thicknesses of several tens of micrometers to lead taps of the cathode and anode with thicknesses of several hundreds of micrometers. Ultrasonic welding exhibits excellent bonding when bonded with very thin plates, such as negative and positive electrodes of LIBs, and dissimilar and highly conductive materials. In addition, ultrasonic welding has a small heat-affected zone. In LIBs, Cu is mainly used as the negative electrode sheet, whereas Cu or Ni is used as the negative electrode tab. In this study, one or two electrode sheets (t0.025 mm Cu) were welded to one lead tab (t0.1 mm Cu). The welding energy and pressure were used as welding parameters to determine the welding strength of the interface between two or three welded materials. Finally, the effects of these welding parameters on the welding strength were investigated.
The structural and thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ electrode during cycling process was studied. The sample was prepared by simple combustion method. Although there were irreversible changes on the initial cycle, O3 stacking for $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ structure was retained during the first and subsequent cycling process. Impedance of the test cell was decreased after the first charge-discharge process, which would be of benefit to intercalation and deintercalation of lithium ion on subsequent cycling. As expected, cycling test for 75 times increased impedance of the cell a little, instead, thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ was improved. Moreover, based on DSC analysis, the initial exothermic peak was shifted to high temperature range and the amount of heat was also decreased after cycling test, which displayed that thermal stability was not deteriorated during cycling.
In the past ten years, $LiMn_2O_4$-based spinels have been extensively studied as positive electrode materials for lithium-ion batteries. To improve the cycle performance of spinel $LiMn_2O_4$ as the cathode of 4V class lithium secondary batteries, spinel phases $LiMn_2O_4$ were prepared at various temperatures ranging form 600-900$^{\cire}C$ in air. The results showed that charge.dischare capacity of $LiMn_2O_4$ varied at 1st temperature from $200^{\circ}C to 600^{\circ}C$ increase with increasing temperature. $LiMn_2O_4$ synthesized at 2nd temperature $750^{\circ}C$excellent charge.discharge capacity, efficiency and cyclability compared to the samplesynthesized different temperatures. The value of lst charge.discharge capacity was 121mAh/g, 118mAh/g, Also, the efficiency value was about 97%.
In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.
리튬이온 배터리(LIB) 제조를 위한 리튬의 사용이 점차 증가함에 따라 그에 따라 발생되는 리튬이온배터리 폐기가 증가될 것으로 사료된다. 이에 따라 폐배터리를 재활용을 하기위한 용매 추출을 통한 재활용에 대한 활발한 연구가 니켈, 코발트 및 망간과 같은 유가금속을 제거한 후 얻은 폐 용액에서 리튬의 회수가 중요하다. 본 연구에서는 폐이차전지 재활용공정 후 발생되는 폐액에서 리튬을 회수하기위해 추출제 Di-(2-ethylhexyl) hosphoricacid(D2EHPA)와 등유의 개질제 Tri-n-butyphosphate(TBP)를 선택적으로 혼합하여 추출조건을 최적화하였다. 폐액에는 리튬과 고농도의 나트륨(Li+ = 0.5% ~ 1%, Na+ = 3 ~ 6.5%)을 함유하고 있었으며, 리튬의 추출은 유기용매의 다른 구성에서 최종적으로 20% D2EHPA + 20% TBP + 60% 등유로 구성된 유기용매에서 효과적인 추출을 조건을 확립하였다. NaOH의 비누화를 이용한 SX 시스템에서는 평형 pH 4~4.5에서 유기 대 수성(O/A)이 5일 때 약 95% 이상의 리튬이 선택적으로 추출되는 것을 확인하였다. 적은 양의 나트륨으로 염화리튬에서 탄산리튬 분말을 얻기 위해 고순도 중탄산암모늄을 처리하였다. 최종적으로 처리된 탄산리튬에 여러번 세수를 통하여 미량의 나트륨을 제거하고 고순도 탄산리튬 분말(순도 99.2%)을 제조하였다. 따라서 본 연구를 통하여 폐이차전지 재활용공정에서 발생되는 폐액을 활용하여 탄산리튬의 효율적인 제조방법을 확인하였다.
This paper proposes a machine learning-based screening algorithm to build the retired battery pack of the energy storage system. The proposed algorithm creates the dataset of various performance parameters of the retired battery, and this dataset is preprocessed through a principal component analysis to reduce the overfitting problem. The retried batteries with a large deviation are excluded in the dataset through a density-based spatial clustering of applications with noise, and the K-means clustering method is formulated to select the group of the retired batteries to satisfy the deviation requirement conditions. The performance of the proposed algorithm is verified based on NASA and Oxford datasets.
Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. $Li_4Ti_5O_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here $Li_4Ti_5O_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of $Li_4Ti_5O_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of $1.0{\sim}3.0V$. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transfer during the lithium intercalation and deintercalation process.
Silicon (Si) is considered as a promising substitute for the conventional graphite due to its high theoretical specific capacity (3579 mAh/g, Li15Si4) and proper working voltage (~0.3V vs Li+/Li). However, the large volume change of Si during (de)lithiation brings about severe degradation of battery performances, rendering it difficult to be applied in the practical battery directly. As a one feasible candidate of industrial Si anode, silicon monoxide (SiOx) demonstrates great electrochemical stability with its specialized strategy, downsized Si nanocrystallites surrounded by Li+ inactive buffer phase (Li2O and Li4SiO4). Nevertheless, SiOx inherently has the initial irreversible capacity and poor electrical conductivity. To overcome those issues, conformal carbon coating has been performed on SiOx utilizing ethylbenzene as the carbon precursor of chemical vapor deposition (CVD). Through various characterizations, it is confirmed that the carbon is homogeneously coated on the surface of SiOx. Accordingly, the carbon-coated SiOx from CVD using ethylbenzene demonstrates 73% of the first cycle efficiency and great cycle life (88.1% capacity retention at 50th cycle). This work provides a promising synthetic route of the uniform and scalable carbon coating on Si anode for high-energy density.
고전압에서도 사용 가능한 바인더 개발에 대한 요구가 증대됨에 따라 이에 적합한 내산화성이 우수한 바인더를 양자화학적 모델링에 기반하여 제안하고자 하였다. 각 고분자 poly(acryl amide)(PAM), poly(methyl acrylate)(PMA), poly(vinylidene fluoride)(PVDF), poly(hexafluropropylene)(PHFP)에 대하여 반경험적 방법(Semi-empirical method) 및 밀도범함수 이론(Density Functional Theory, DFT) 방법을 이용하여 단량체부터 사량체까지의 고분자 바인더에 대한 최고 점유 분자 궤도함수(Highest occupied molecular orbital, HOMO) 에너지와 이온화 에너지(Ionization Potential, IP) 값을 구하여 실험 값과 비교하였다. 밀도범함수 방법으로 해석한 결과, PHFP, PVDF, PMA, PAM 순으로 고분자의 내산화성이 좋은 것으로 시뮬레이션을 통해 예측되었고, 이러한 결과는 선형 훑음 전압-전류법(Linear Sweep Voltametry, LSV)으로부터 얻은 실험값과 일치하였다. 또한 이 결과는 HOMO 오비탈의 구조를 분석하여 내산화성이 좋은 원인을 규명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.