Electrochemical properties of $LiMn_{0.8}Fe_{0.2}PO_4$ cathode were investigated with gel polymer electrolyte (GPE). To access fast and efficient transport of ions and electrons during the charge/discharge process, a pure and well-crystallized $LiMn_{0.8}Fe_{0.2}PO_4$ cathode material was directly synthesized via spray-pyrolysis method. For high operation voltage, polyacrylonitrile (PAN)-based gel polymer electrolyte was then prepared by electrospinning process. The gel polymer electrolyte showed high ionic conductivity of $2.9{\times}10^{-3}S\;cm^{-1}$ at $25^{\circ}C$ and good electrochemical stability. $Li/GEP/LiMn_{0.8}Fe_{0.2}PO_4$ cell delivered a discharge capacity of $159mAh\;g^{-1}$ at 0.1 C rate that was close to the theoretical value ($170mAh\;g^{-1}$). The cell allows stable cycle performance (99.3% capacity retention) with discharge capacity of $133.5mAh\;g^{-1}$ for over 300 cycles at 1 C rate and exhibits high rate-capability. PAN-based gel polymer is a suitable electrolyte for application in $LiMn_{0.8}Fe_{0.2}PO_4/Li$ batteries with perspective in high energy density and safety.
Silicon-based materials are one of the most promising anode active materials in lithium-ion battery. A carbon layer decorated on the surface of silicon particles efficiently suppresses the large volume expansion of silicon and improves electrical conductivity. Carbon coating through chemical vapor deposition (CVD) is one of the most effective strategies to synthesize carbon- coated silicon materials suitable for mass production. Herein, we synthesized carbon coated SiOx via pilot scale CVD reactor (P-SiOx@C) and carbon coated SiOx via industrial scale CVD reactor (I-SiOx@C) to identify physical characteristic changes according to the CVD capacity. Reduced size silicon domains and local non-uniform carbon coating layer were detected in I-SiOx@C due to non-uniform temperature distribution in the industrial scale CVD reactor with large capacity, resulting in increased surface area due to severe electrolyte consumption.
One of main problems in developing electricity grid for archipelago country like Indonesia is the geographical concerns as it consists of many islands. In some rural areas, electricity has not been available yet due to the limited infrastructure access, leading to high investment cost. In this study, a portable energy storage system based on the lithium-ion batteries called Tabung Listrik or TaLis (DC-based power bank) and DC house system were proposed as the solution for providing electricity for rural areas with relatively lower cost. TaLis is designed to be portable so it is easy to carry around as well as it can be used for many purposes. Since 2017, TaLis prototype has been used as the energy storage in a DC house system at Sekolah Master Indonesia, where an array of PV rooftop is functioned as the main DC power supply. Besides, some TaLis were also dispatched for emergency response during the disaster situations in Indonesia, such as during the measles outbreak in Asmat-Papua, the earthquake disaster in Lombok and tsunami in Palu.
Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.
In the study, a room temperature ionic liquids as a co-solvent was used to evaluate the feasibility with various electrodes in Li-ion batteries. 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl) imide(PP12 TFSI) is an ionic liquid that melts at $85^{\circ}C$. Pure PP12 TFSI is not able to be used as an electrolyte because it is a solid salt at room temperature. PP12 TFSI is mixed with EC/DEC(1/1 vol.%) to prepare mixed solvents. The electrolyte 1.5M $LiPF_6$ in a mixed solvent having 44 wt.% PP12 TFSI is prepared to evaluated the various electrodes. The electrolytes provides good cycles life of cells with $LiNi_{0.5}Mn_{1.5}O_4(LNMO)$, $LiFePO_4(LFP)$, $Li_4Ti_5O_{12}(LTO)$ and artificial graphite. Further improvement of the cell performances can be accomplished by enhancing wettability of electrolytes to electrodes.
In general, the battery and the(electric) condenser are pictured as electrical energy storage devices. Although there were lots of inventions and utilizations of morden conveniences according to enormous growth of the science and technologies after the Industrial Revolution, a speed of technology development on these devices being closely used in civilized human lives and many electric or electronic systems as a core component are relatively slower to the other fields of technologies. Nevertheless, based on a remarkable progress of the material science and technologies for the last ten years, a new type of electrical energy storage device so called as 'electrochemical capacitors' are being developed and used practically. The electrochemical capacitors exhibit their own characteristics of much enhanced capacitance over the conventional condensers and also distinctively exhibit a longer lift time and higher power capability that the nickel hydrogen batteries and secondary batteries such as lithium ion and polymer batteries does not show up so for. Hence, in this paper, it is intended to introduce a fundamental understanding and updated technology trends on the electrochemical capacitors.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.30
no.4
/
pp.246-252
/
2017
Pulverized $FeS_2$ (pyrite) gives different discharge test results with as-received $FeS_2$ electrodes. The as-received $FeS_2$ electrode shows three voltage plateaus during the discharge test. However, the ball-milled $FeS_2$ electrode shows two voltage plateaus. To interpret this result, the effect of $FeS_2$ particle size on electrochemical reactions is investigated by unit cell discharge tests, SEM and XRD. As a result, it is found that the transition reaction product ($Li_2+xFe+xS_2$) of $FeS_2$ explains the difference. The as-received $FeS_2$ reacts according to three reaction steps ($FeS_2{\rightarrow}Li_3Fe_2S_4{\rightarrow}Li_2+xFe_1+xS_2{\rightarrow}LiFe_2S_4$). However, ball-milled $FeS_2$ reacts without the $Li_2+xFe_1+xS_2$ stage. In this study, this result is explained by the difference in electrochemical reaction mechanism. The as-received $FeS_2$ has a larger radius than the ball-milled $FeS_2$. Therefore, the lithium ion has to diffuse into the $FeS_2$ unreacted core, and $Li_2+xFe_1+xS_2$, the transition reaction product of as-received $FeS_2$, is formed during this stage.
Multi-walled carbon nanotube (MWNT)/$SnO_2$ nano-composite (MSC) for the anode electrode of a Li-ion battery was prepared using a homogeneous precipitation method with $SnCl_2$ precursors in the presence of MWNT. XRD results indicate that when annealed in Ar at $400^{\circ}C$, $Sn_6O_4(OH)_4$ was fully converted to $SnO_2$ phases. TEM observations showed that most of the $SnO_2$ nanoparticles were deposited directly on the outside surface of the MWNT. The electrochemical performance of the MSC electrode showed higher specific capacities than a MWNT and better cycleability than a nano-$SnO_2$ electrode. The electrochemical performance of the MSC electrode improved because the MWNT in the MSC electrode absorbed the mechanical stress induced from a volume change during alloying and de-alloying reactions with lithium, leading to an increase in the electrical conductivity of the composite material.
Magnesium secondary batteries are attracting much attention due to their potential to replace conventionally used lithium ion batteries. Magnesium secondary battery cathode material Mo6S8 were synthesized by molten salt synthesis method and PVC as a carbon materials were added to improve electrochemical properties. Crystal structure, size and surface of the synthesized anode materials were measured through XRD and SEM. Charge-discharge profiles and rate capabilities were measured by battery test system. 2.81 wt% PVC coated sample showed the best rate capabilities of 85.8 mAh/g at 0.125 C-rate, 69.2 mAh/g at 0.5 C-rate, and 60.5 mAh/g at 1 C-rate.
Capacity of layered lithium nickel-cobalt-manganese oxide ($LiNi_{1-x-y}Co_xMn_yO_2$) cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. $Li/Li^+$, but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of $198-173mAhg^{-1}$ over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.