• Title/Summary/Keyword: Lithium-Ion Battery

Search Result 956, Processing Time 0.425 seconds

Recent Research Trend in Conductive Polymer Binders for Silicon-Based Anodes of Lithium-Ion Batteries (리튬이온전지 실리콘 음극용 전도성 고분자 바인더의 연구 동향)

  • Soo Hyun Kim;Chan Ho Park;Hansol Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Silicon has been studied as an anode material for next-generation lithium ion batteries due to its high theoretical electrochemical capacity. However, the extreme volume change during the lithiation/delithiation and the inherently low electronic conductivity of silicon hamper the practical application of silicon anodes. Conductive polymer binders are effective means to solve these problems, and it has been reported that the performance of the silicon anode can be greatly improved through the proper molecular design of the conductive polymer binders. In this paper, representative recent studies on conductive polymer binders for silicon anodes will be introduced, and through this, binder design strategies to overcome the limitations of silicon anodes will be explored.

Measurement of Combustible Characteristics of EC(Ethylene Carbonate) for Battery Electrolyte Organic Solvent (배터리 전해질 유기용매인 EC(Ethylene Carbonate)의 연소특성치 측정)

  • Yu-Ri Jang;Yu-Seon Jang;Jae-Jun Choi;Dong-Myeong Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.50-55
    • /
    • 2023
  • Lithium-ion secondary batteries are currently in high demand and supply. The purpose of this study is to secure the safety of the process by studying the combustion characteristics of EC(Ethylene Carbonate), Which is mainly used as an electrolyte organic solvent for lithium ion batteries. The flash points of the EC by using Setaflash and Pensky-Martens closed-cup testers were experimented at 141 ℃ and 143 ℃, respectively. The flash points of the EC by Tag and Cleveland open cup testers were experimented at 152 ℃ and 156 ℃, respectively. The AIT(Auto Ignition Temperature) of the EC was experimented at 420 ℃. The LEL(Lower Explosive Limit) calculated by using lower flash point of Setaflash was calculated at 3.6 Vol.%.

Study on Recovery of Valuable Metals in Spent Lithium-Ion Batteries by Al2O3-SiO2-CaO-Fe2O3 Slag System

  • Tae Boong Moon;Chulwoong Han;Soong Keun Hyun;Sung Cheol Park;Seong Ho Son;Man Seung Lee;Yong Hwan Kim
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.983-986
    • /
    • 2021
  • This study investigated the recovery behavior of valuable metals (Co, Ni, Cu and Mn) in spent lithium ion-batteries based on Al2O3-SiO2-CaO-Fe2O3 slag system via DC submerged arc smelting process. The valuable metals were recovered by 93.9% at the 1250℃ for 30 min on the 20Al2O3-40SiO2-20CaO-20Fe2O3 (mass%) slag system. From the analysis of the slag by Fourier-transform infrared spectroscopy, it was considered that Fe2O3 and Al2O3 acted as basic oxides to depolymerize SiO4 and AlO4 under the addition of critical 20 mass% Fe2O3 in 20Al2O3-40SiO2-CaO-Fe2O3 (CaO + Fe2O3 = 40 mass%). In addition, it was observed that the addition of Fe2O3 ranging between 20 and 30 mass% lowers the melting point of the slag system.

Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes (고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성)

  • Sung Won Hwang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

Electrochemical Properties of Carbon Composites Prepared by Using Graphite Ball-milled in Argon and Air Atmosphere

  • Lee, Kyoung-Muk;Oh, Seh-Min;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1121-1124
    • /
    • 2008
  • A carbon composite was synthesized by mechanical mixing of ball-milled graphite and PVC powders, followed by pyrolysis reaction of PVC. Natural graphite ball milled under atmosphere of argon or air leads to a disordered structure. It appears that the electrochemical lithium intercalation reaction is dependent on the atmosphere in which the graphite is ball milled. The carbon composite obtained using air-milled graphite shows a high reversible capacity and high initial coulombic efficiency compared to argon-milled graphite. This is attributed to the enhanced thermal stability of a disordered structure in the air milled sample. For the one with air-milled graphite, the disordered structure is maintained during heat treatment, while argon-milled graphite is partially crystallized.

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries

  • Park, Junsoo;Lee, Jae-Won
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.

Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries

  • Oh, Seung-Min;Sun, Yang-Kook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2012
  • Mo-doped $LiFePO_4$ was synthesized via co-precipitation method using sucrose as the carbon source. Structure, surface morphology, and the electrochemical properties of the synthesized olivine compounds were investigated using Rietveld refinement of X-ray diffraction data (XRD), scanning electron microscopy (SEM), and electrochemical charge-ischarge tests. Spherical morphology with the particle size of ${\sim}8{\mu}m$ authenticated the enhanced tap density and volumetric energy density of the synthesized materials. Charge-discharge behavior of $LiFePO_4$ and Mo-doped $LiFePO_4$ cells demonstrated a specific capacity of 130 and 145 mAh $g^{-1}$, respectively. Mo-doped $LiFePO_4$ cells exhibited an excellent discharge capacity at 96 mAh $g^{-1}$ at 7 C-rate.

Effect of Calcination Temperature on the Structure and Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials

  • Ju, Seo Hee;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.59-62
    • /
    • 2013
  • Spinel $LiMn_{1.5}Ni_{0.5}O_4$ cathode powders with different morphologies were synthesized by a co-precipitation method using oxalic acid. The calcination temperature affected the morphologies, crystalline structure and electrochemical properties of the $LiMn_{1.5}Ni_{0.5}O_4$ powders. The $LiMn_{1.5}Ni_{0.5}O_4$ powders obtained at a calcination temperature of $850^{\circ}C$ exhibited the highest initial discharge capacity with good capacity retention and high rate capability.

The study on Fabrication and Characterization of $LiMn_{2-x}Cu_{x}O_{4}$for cathode material of Lithium-ion Battery (리튬이온 이차전지 양극활물질 $LiMn_{2-x}Cu_{x}O_{4}$의 제작과 전극특성에 관한 연구)

  • 박종광;고건문;홍세은;윤기웅;안용호;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.713-716
    • /
    • 2001
  • In many papers, the electrochemical analysis of LiMn$_2$O$_4$shows the transition results of Mn$^{3+}$ ion. Charge ordering is accompanied by simultaneous orbital ordering due to the Jahn-Teller effect in Mnl$^{3+}$ ions. To analyze the cycle performance of LiMn$_{2-x}$Cu$_{x}$ O$_4$as the cathode of 4 V class lithium secondary batteries, XRD, TGA analysis were conducted. Although the cycle performance of the LiMn$_{2-x}$Cu$_{x}$ O$_4$was improved from pure LiMn$_2$O$_4$, the discharge capacity was significantly lower than LiCoO$_2$. In this paper, We study the Electrochemical characterization and enhanced stability of Cu-doped spinels in the LiMn$_{2-x}$Cu$_{x}$ O$_4$upon initial cycling.l cycling.

  • PDF

High power lithium ion polymer batteries (IV): Nano-sized cathode materials manufactured in a single synthetic step using united eutectic self-mixing method

  • An, Uk;Ra, Dong-Il;Lee, Beom-Jae;Han, Gyu-Seung
    • Rubber Technology
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2005
  • Nano-sized cathode materials for high power lithium ion polymer battery are easily and economically prepared using united eutectic self-mixing method without any artificial mixing procedures of reactants and ultra-miniaturization of products. While the micro-sized $LiNi_{0.7}Co_{0.3}O_2$ exhibits the discharge capacities of 167.8 mAh/g at 0.1C and 142.5 mAh/g at 3.0C, those of the nano-sized $LiNi_{0.7}Co_{0.3}O_2$ are 170.8 mAh/g at 0.1C and 159.3 mAh/g at 3.0C. In the case of $LiCoO_2$, the micro-sized $LiCoO_2$ exhibits the discharge capacities of 134.8 mAh/g at 0.1C and 118.6 mAh/g at 5.0C. Differently, the nano-sized $LiCoO_2$ exhibits the discharge capacities of 137.2 mAh/g at 0.1C and 131.7 mAh/g at 5.0C.

  • PDF