• Title/Summary/Keyword: Lithium-Air Battery

Search Result 62, Processing Time 0.024 seconds

A Consideration on Improvement of Safe Lithium Battery Air Transportation (리튬 전지의 안전한 항공 운송을 위한 개선 방향 고찰)

  • Joe, Hunmyung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.135-142
    • /
    • 2017
  • As PED(Personal Electronic Device) market has been rapidly grown, the demand on Lithium battery, which is most commonly used power source of PED, also has been increased. Dew to this trend, the amount of Lithium battery air transportation is also increasing. However, it should be treated very carefully because Lithium is one of very explosive metal. So ICAO, IATA and civil aviation agencies try to enhance the safety of Lithium battery air transportation by aircraft certification and operating regulations. To enhance in-flight safety, the aircraft for transporting Lithium battery should equip certified fire extinguishing system. But recent studies find that Halon, currently used extinguishing agent, is not effective on extinguishing Lithium battery fire. Besides, there is no certified Halon replacement for air use and no acceptable specific minimum performance standard(MPS) for Lithium battery fire. For this issue, a study on characteristics and establishing MPS of Lithium battery fire is needed for safe air transportation of Lithium battery.

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

Internal Structure Optimization to enhance the Thermal Performance of an Air-cooled Lithium-ion Battery Pack (공냉식 리튬 이온 배터리 팩의 열 성능 향상을 위한 내부 구조 최적화)

  • Li, Quanyi;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.54-64
    • /
    • 2021
  • Electric vehicles use lithium-ion battery packs as the power supply, where the batteries are connected in series or parallel. The temperature control of each battery is essential to ensure a consistent overall temperature. This study focused on reducing ohmic heating caused by batteries to realize a uniform battery temperature. The battery spacing was optimized to improve air cooling, and the tilt angle between the batteries was varied to optimize the internal structure of the batterypack. Simulations were performed to evaluate the effects of these parameters, and the results showed that the optimal scheme effectively achieved a uniform battery temperature under a constant power discharge. These findings can contribute to future research on cooling methods for battery packs.

The Electrochemical Properties of SnO2 as Cathodes for Lithium Air Batteries

  • Lee, Yoon-Ho;Park, Heai-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.164-171
    • /
    • 2019
  • Nano-sized $SnO_2$ powders were synthesized via a solvent thermal reaction using $SnClO_4$, NaOH, and ethylene glycol at $150^{\circ}C$. TGA, SEM, FT-IR, XRD, and Potentiostat/Galvanostat were employed to investigate the chemical and electrochemical characteristics of the synthesized $SnO_2$. The structure of $SnO_2$ was amorphous, and when heat treated at $500^{\circ}C$, it was transformed into a crystalline structure. The morphology obtained by SEM micrographs of the as-synthesized $SnO_2$ showed powder features that had diameters ranging 100 to 200 nm. The electrochemical performance of the crystalline $SnO_2$ as a Li-air battery cathode was better than that of the amorphous $SnO_2$. The specific capacity of the crystalline $SnO_2$ was at least 350 mAh/g at 10 mA/g discharge rate. However, there was some capacity loss of all the cells during the consecutive cycles. Keywords : Lithium-Air Battery.

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries (차세대 리튬이차전지용 고체 전해질 기술)

  • Kim, K.M.;Oh, J.M.;Shin, D.O.;Kim, J.Y.;Lee, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

Trend on the Recycling Technologies for the used Lithium Battery by the Patent Analysis (특허(特許)로 본 폐리튬전지 재활용(再活用) 기술(技術) 동향(動向))

  • Sohn, Jeong-Soo;Shin, Shun-Myung;Kang, Kyung-Seok;Choi, Mi-Jeong
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.50-60
    • /
    • 2007
  • There are several kinds of battery such as zinc-air battery, lithium battery, Manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery, alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used lithium battery were analyzed. The range of search was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Electrochemical Performances of Lithium-air Cell with Carbon Materials

  • Park, C.K.;Park, S.B.;Lee, S.Y.;Lee, H.;Jang, H.;Cho, W.I.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3221-3224
    • /
    • 2010
  • This study investigates the requirements of lithium-air cathodes, which directly influence discharge capacity. The cathodes of Li-air cell are made by using five different carbon materials, such as Ketjen black EC600JD, Super P, Ketjen black EC300JD, Denka black, and Ensaco 250G. The Ketjen black EC600JD provides discharge capacity of 2600 mAh/g per carbon weight, while that of Ensaco 250G shows only 579 mAh/g. To figure out the differences of discharge capacity from carbon materials, their surface area and pore volume are analyzed. These are found out to be the critical factors in determining discharge capacity. Furthermore, carbon loading on Ni foam and amounts of electrolyte are significant factors that affect discharge capacity. In order to investigate catalyst effect, electrolytic manganese dioxide (EMD) is incorporated and delivered 4307 mAh/g per carbon weight. This infers that EMD facilitates to break $O_2$ interactions and leads to enhance discharge capacity.

New Synthetic Method of Perfluoro-Silanes for the Stable Electrolyte of Lithium Ion Battery Application

  • Koh, Kyungkuk;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.171-174
    • /
    • 2017
  • Non-hydrolyzable fluorinated organosilicon compounds as an eletrolyte for the application of lithium-ion batteries (LIB) are synthesized. New synthetic method for the perfluorinated organosilicon compound containing spacer such as ethyl and propyl group with cyano moiety instead of ethylene glycol to prevent hydrolysis and to promote conductivity are developed in one pot reaction with moderately high yield. Air-sensitive boron trifluoride etherate is no longer required in this reaction. The products are characterized by spectroscopic analysis.

Development of ESS Based on VRFB-LFPB Hybrid Batteries (VRFB-LFPB 하이브리드 배터리 기반의 ESS 개발에 관한 연구)

  • Cheon, Young Sik;Park, Jin Soo;You, Jinho;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • High-power lithium batteries are suitable for equipment with high power output needs, such as for ESS's initial start-up. However, their management cost is increased by the installation of air-conditioning to minimize the risk of explosion due to internal temperature rise and also by a restriction on the number of charge/discharge cycles. High-capacity flow batteries, on the other hand, have many advantages. They can be used for over 20 years due to their low management costs, resulting from no risk of explosion and a high number of charge/discharge cycles. In this paper, we propose an ESS based on hybrid batteries that uses a lithium iron phosphate battery (LiFePO) at the initial startup and a vanadium redox flow battery (VRFB) from the end of the transient period, with a bi-directional PCS to operate two batteries with different DC voltage levels and using an efficient energy management control algorithm.

A Mechanism Study on Formation and Reduction of Residual Li of High Nickel Cathode for Lithium-ion Batteries (층상계 하이니켈 양극재의 잔류 리튬 생성 및 저감 메커니즘 연구)

  • MinWook, Pin;Beom Tak, Na;Tae Eun, Hong;Youngjin, Kim
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • High nickel layered oxide cathodes are gaining increasing attention for lithium-ion batteries due to their higher energy density and lower cost compared to LiCoO2. However, they suffer from the formation of residual lithium on the surface in the form of LiOH and Li2CO3 on exposure to ambient air. The residual lithium causes notorious issues, such as slurry gelation during electrode preparation and gas evolution during cell cycling. In this review, we investigate the residual lithium issues through its impact on cathode slurry instability based on deformed polyvinylidene fluoride (PVdF) as well as its formation and reduction mechanism in terms of inherently off-stoichiometric synthesis of high nickel cathodes. Additionally, new analysis method with anhydrous methanol was introduced to exclude Li+/H+ exchange effect during sample preparation with distilled water. We hope that this review would contribute to encouraging the academic efforts to consider practical aspects and mitigation in global high-energy-density lithium-ion battery manufacturers.