• Title/Summary/Keyword: Lithium rechargeable batteries

Search Result 141, Processing Time 0.022 seconds

Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future

  • Kim, Joo-Hyung;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.307-324
    • /
    • 2018
  • Rechargeable lithium-ion batteries (LIBs) have been rapidly expanding from IT based applications to uses in electric vehicles (EVs), smart grids, and energy storage systems (ESSs), all of which require low cost, high energy density and high power density. The increasing demand for LIBs has resulted in increasing price of the lithium source, which is a major obstacle to wider application. To date, the possible depletion of lithium resources has become relevant, giving rise to the interest in Na-ion batteries (NIBs) as promising alternatives to LIBs. A lot of transition metal compounds based on conversion-alloying reaction have been extensively investigated to meet the requirement for the anodes with high energy density and long life-time. In-depth understanding the electrochemical reaction mechanisms for the transition metal compounds makes it promising negative anode for NIBs and provides feasible strategy for low cost and large-scale energy storage system in the near future.

The Preparation Characteristics of Vanadium-based Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 양극의 제초 특성)

  • ;;N. Oyama
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.395-398
    • /
    • 1998
  • Lithium insertion has been studied in a number of vanadium oxides with special regard to their application as the active materials in rechargeable lithium cells. Very high stoichiometric energy densities for lithium insertion are found for several of these materials. Some vanadium oxides, e.g. V$_2$ $O_{5}$ and V$_{6}$ $O_{13}$, are now being used in commercially developed rechargeable Li batteries. Another material which is receiving remarkable attention for this kind of cells is LiV$_3$ $O_{8}$. In variety of ternary lithium-vanadium oxides, the lithium content can be varied between certain limits without major changes in the vanadium oxygen lattice. In our worts, the oxides which do net form these thermodynamically stable bronzes can still accommodate large amounts of lithium at ambient temperature, forming kinetically stable insertion compounds. These compounds owe their existence to the whereas lithium is easily introduced into these open structures. The oxides investigated are rather poor electronic conductors; the conductivity decrease with increase in the lithium content. Improvements in the electrode fabrication technique are needed to alleviate this Problem.oblem.

  • PDF

Electrochemical Performance of AlF3-Coated LiV3O8 for Aqueous Rechargeable Lithium Ion Batteries

  • Tron, Artur;Kang, Hyunchul;Kim, Jinho;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • In aqueous rechargeable lithium ion batteries, $LiV_3O_8$ exhibits obviously enhanced electrochemical performance after $AlF_3$ surface modification owing to improved surface stability to fragile aqueous electrolyte. The cycle life of $LiV_3O_8$ is significantly enhanced by the presence of an $AlF_3$ coating at an optimal content of 1 wt.%. The results of powder X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and galvanostatic charge-discharge measurements confirm that the electrochemical improvement can be attributed mainly to the presence of $AlF_3$ on the surface of $LiV_3O_8$. Furthermore, the $AlF_3$ coating significantly reduces vanadium ion dissolution and surface failure by stabilizing the surface of the $LiV_3O_8$ in an aqueous electrolyte solution. The results suggest that the $AlF_3$ coating can prevent the formation of unfavorable side reaction components and facilitate lithium ion diffusion, leading to reduced surface resistance and improved surface stability compared to bare $LiV_3O_8$ and affording enhanced electrochemical performance in aqueous electrolyte solutions.

Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries

  • Choi, Ji-Ae;Shim, Eun-Gi;Scrosati, Bruno;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3190-3194
    • /
    • 2010
  • Mixed electrolytes formed by the combination of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP-TFSI) ionic liquid and standard liquid electrolyte are prepared and characterized. Linear sweep voltammetry measurements demonstrate that these mixed systems exhibit a wide electrochemical stability window, allowing them to be suitable electrolyte for carbonaceous anode-based lithium-ion batteries. Lithium-ion cells composed of graphite anode and $LiCoO_2$ cathode are assembled using the mixed electrolytes, and their cycling performances are evaluated. The cell containing proper content of BMP-TFSI shows good cycling performance comparable to that of a cell assembled with organic electrolyte. The presence of BMP-TFSI in the mixed electrolyte contributes to the reduction of the flammability of electrolyte solution and the improvement of the thermal stability of charged $Li_{1-x}CoO_2$ in the electrolyte solution.

Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

  • Park, Jinho;Lee, Byoungkuk;Jung, Do-Yang;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1927-1934
    • /
    • 2018
  • In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.

The Electrochemical Properties of Heat Treated Poly(p-phenylene) Based Carbon for Li rechargeable batteries (리튬 2차 전지용 Poly(p-phenyllene) based carbon의 열처리 온도에 따른 전기화학적 특성)

  • 김주승;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.373-377
    • /
    • 1996
  • Carbon materials have become a major interestings of research directed toward the development for anode of lithium batteries of enhanced cell capacity. The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon as a anode of lithium secondary batteries. We have synthesized PPP from benzen by chemical reaction. And then disordered carbon materials were obtained by heat-treating PPP in a nitrogen atmosphere at 40$0^{\circ}C$ to 100$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak around 2$\theta$=23$^{\circ}$. Electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. Excellent reversible capacity of 275㎃h/g and 97% of charge/discharge efficiency were observed heat treated PPP-based carbon a $700^{\circ}C$.

  • PDF

Characterization of Atmospheric H2-Plasma-Treated LiNi1/3Co1/3Mn1/3O2 as Cathode Materials in Lithium Rechargeable Batteries (리튬이차전지에서 대기압 수소플라즈마 처리된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성분석)

  • Sun, Ho-Jung;Lee, Jae-Ho;Jeong, Hyun-Young;Seok, Dong-Chan;Jung, Yongho;Park, Gyungse;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.160-171
    • /
    • 2013
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powder for cathode materials in lithium rechargeable batteries was treated by atmospheric plasma containing hydrogen to investigate the relationship between charge/discharge performance and physical/chemical changes of materials. Hydrogen plasma at atmosphere pressure was irradiated on the surface of active materials, and the change for their crystal structure, surface morphology, and chemical composition were observed by XRD, SEM-EDS and titration method, respectively. The crystal structure and surface morphology of $H_2$ plasma-treated powders were not changed but their chemical compositions were slightly varied. For charge/discharge test, $H_2$ plasma affected initial capacity and rate capability of active materials but continuous cycling was not subject to plasma treatment. Therefore, it was observed that $H_2$ plasma treatment affected the surface of materials and caused the change of chemical composition.

Synthesis and Electrochemical Characteristics of Li0.7[Ni0.05Mn0.95]O2 as a Positive Material for Rechargeable Lithium Batteries

  • Shin, Sun-Sik;Kim, Dong-Won;Sun, Yang-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.679-682
    • /
    • 2002
  • Layered Na0.7[Ni0.05Mn0.95]O2 compounds have been synthesized by a sol-gel method, using glycolic acid as a chelating agent. Na0.7[Ni0.05Mn0.95]O2 precursors w ere used to prepare layered lithium manganese oxides by ion exchange for Na by Li, using LiBr in hexanol. Powder X-ray diffraction shows the layered Na0.7[Ni0.05Mn0.95]O2 has an O3 type structure, which exhibits a large reversible capacity of approximately 190 mA h g-1 in the 2.4-4.5 V range. Na0.7[Ni0.05Mn0.95]O2 powders undergo transformation to spinel during cycling.

Influence of ionic liquid structures on polyimide-based gel polymer electrolytes for high-safety lithium batteries

  • Kim, Jae-Kwang
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.168-172
    • /
    • 2018
  • This study first investigates the effect of the choice of cation on three different ionic-liquid-based gel polymer electrolytes (ILPEs) with polyimide membranes. The preparation of three ILPEs based on electrospun membranes of PI and incorporating a room-temperature ionic liquid, 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide complexed with lithium bis(trifluoromethylsulfonyl)imide, is described. ILPE-EMImTFSI has an ionic conductivity as high as $5.3{\times}10^{-3}S\;cm^{-1}$ at $30^{\circ}C$. Furthermore, it shows higher thermal stability and electrochemical oxidation stability compared to the other two ILPEs because of its stronger bonds. These results indicate that polyimide-based ILPE-EMImTFSI is a good candidate for use in high-safety rechargeable lithium metal batteries.