• Title/Summary/Keyword: Lithium ion secondary battery

Search Result 214, Processing Time 0.023 seconds

Novel Synthesis Method and Electrochemical Characteristics of Lithium Titanium Oxide as Anode Material for Lithium Secondary Battery

  • Kim Han-Joo;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.119-123
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. Li$_{4}$Ti$_{5}$O$_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here Li$_{4}$Ti$_{5}$O$_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed Li$_{4}$ Ti$_{5}$O$_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of Li$_{4}$ Ti$_{5}$O$_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\~$ 3.0 V. Furthermore, the crystalline structure of Li$_{4}$ Ti$_{5}$O$_{12}$ didn't transform during the lithium intercalation and deintercalation process.

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

The Effect of Crystalline Type of Carbonaceous Materials on Performance of the Carbon Anode for Lithium Ion Secondary Battery (리튬이온이차전지에서 결정성 탄소재료가 탄소부극 특성에 미치는 영향)

  • Kim, Hyun-Joong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1059-1064
    • /
    • 1998
  • We have investigated various kind of graphite and MCMB6-28 to develop carbon negative electrode for lithium ion secondary battery. The interlayer length of them was $3.358{\sim}3.363{\AA}$ and the BET specific surface area was $2.95{\sim}26.15m^2/g$. From this study, When the interlayer of them was large and the BET specific surface area was high, the electrochemical characteristics of them was very excellent. Adding 0, 3, 5, wt% of KJ-Black as conducting agent to various graphitic carbon active materials, interface resistance of electrode and electrolyte was less, but rechargeability was better at 3 wt%. At constant current charge and discharge test, discharge capacity was small according to large current.

  • PDF

The Polyaniline Electrode Doped with Li Salt and Protonic Acid in Lithium Secondary Battery

  • Ryu, Kwang-Sun;Kim, Kwang-Man;Hong, Young-Sik;Park, Yong-Joon;Jang, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1144-1148
    • /
    • 2002
  • We prepared the polyaniline (Pani) film and powder by chemical polymerization and doping with different dopants and also investigated the capability of Li//polyaniline cells after assembling. The oxidation/reduction potentials and electrochemical reaction of Li//polyaniline cells were tested by cyclic voltammetry technique. The Li//Pani-HCl cells with 10% and 20% conductors show a little larger specific discharge capacities than that without conductor. The highest discharge capacity of almost 50 mAh/g at 100th cycle is also achieved. However, Li//Pani-LiPF6 with 20% conductor shows a remarkable performance of ~90 mAh/g at 100th cycle. This is feasible value for using as the positive electrode material of lithium ion secondary batteries. It is also proved that the powder type electrode of Pani is better to use than the film type one to improve the specific discharge capacity and its stability with cycle.

Analysis of Secondary Battery Trends Using Topic Modeling: Focusing on Solid-State Batteries

  • Chunghyun Do;Yong Jin Kim
    • Asian Journal of Innovation and Policy
    • /
    • v.12 no.3
    • /
    • pp.345-362
    • /
    • 2023
  • As the widespread adoption and proliferation of electric vehicles continue, the secondary battery market is experiencing rapid growth. However, lithium-ion batteries, which constitute a majority of secondary batteries, present high risks of fire and explosion. Solid-state batteries are thus garnering attention as the next-generation batteries since they eliminate fire hazards and significantly reduce the risk of explosions. Against this background, the study aimed to analyze research trends and provide insights by examining 2,927 domestic papers related to solid-state batteries over the past decade (2013-2022). Specifically, we used topic modeling to extract major keywords associated with solid-state batteries research and to explore the network characteristics across major topics. The changes in research on solid-state batteries were analyzed in-depth by calculating topic dominance by year. The findings provide an overview of the emerging trends in domestic solid-state battery research, and might serve as a valuable reference in shaping long-term research directions.

Secondary Battery Electrode Material for Next Generation Mobility Power Storage (차세대 모빌리티 전력 저장 이차전지 핵심소재)

  • Yu-Jin Song;Seo-Hyun Kim;Se-Jin Kim;Jae Hoon Kim
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.159-174
    • /
    • 2024
  • The rapid increase in energy consumption based on fossil fuels is accelerating global warming. In particular, the road transportation sector has high carbon dioxide emissions, so transitioning towards electric vehicles is recommended. Thus, the importance of secondary batteries is increasing. Secondary batteries are reversible batteries that use energy and can be reused through a charging and discharging process. Currently, lithium-ion batteries are widely used. Secondary batteries place importance on six major factors: energy, output, lifespan, environmental friendliness, cost, and stability. Research is actively being conducted to satisfy all six factors by understanding the material characteristics of each component of the battery. As it is difficult to move away from lithium as a cathode material, researchers are investigating higher performance materials that mix materials such as cobalt, nickel, manganese, and aluminum with lithium and use graphite, silicon, and lithium metal to increase capacity. In the case of electrolytes, liquid electrolytes are still mainly used. However, solid electrolytes are being studied due to their stability, but additional research must be conducted to satisfy the energy and output factors. This review paper aims to provide an understanding of secondary batteries through an overview of secondary batteries, the materials and characteristics of their components, their technological trends, and their associated companies.