• 제목/요약/키워드: Lithium Manganese Spinel

검색결과 36건 처리시간 0.028초

Synthesis and Electrochemical Characteristics of Li0.7[Ni0.05Mn0.95]O2 as a Positive Material for Rechargeable Lithium Batteries

  • Shin, Sun-Sik;Kim, Dong-Won;Sun, Yang-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권5호
    • /
    • pp.679-682
    • /
    • 2002
  • Layered Na0.7[Ni0.05Mn0.95]O2 compounds have been synthesized by a sol-gel method, using glycolic acid as a chelating agent. Na0.7[Ni0.05Mn0.95]O2 precursors w ere used to prepare layered lithium manganese oxides by ion exchange for Na by Li, using LiBr in hexanol. Powder X-ray diffraction shows the layered Na0.7[Ni0.05Mn0.95]O2 has an O3 type structure, which exhibits a large reversible capacity of approximately 190 mA h g-1 in the 2.4-4.5 V range. Na0.7[Ni0.05Mn0.95]O2 powders undergo transformation to spinel during cycling.

Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material

  • Lee, Dong-Hee;Ryu, Taegong;Shin, Junho;Kim, Young Ho
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.87-95
    • /
    • 2018
  • This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than -0.4 V and to the Freundlich isotherm at electrical potentials higher than -0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of -1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of $22.61kJ\;mol^{-1}$ during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.

The Synthesis and Electrochemical Properties of Lithium Manganese Oxide (Li2MnO3)

  • Seo, Hyo-Ree;Lee, Eun-Ah;Yi, Cheol-Woo;Kim, Ke-On
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.180-185
    • /
    • 2011
  • The layered lithium-manganese oxide ($Li_2MnO_3$) as a cathode material of lithium ion secondary batteries was prepared and characterized the physico-chemical and electrochemical properties. The morphological and structural changes of MnO(OH) and $Li_2MnO_3$ are closely connected to the changes of electrochemical properties. The crystallinity of $Li_2MnO_3$ is enhanced as the annealing temperature increase, but its capacity is reduced due to the easier structural changes of less crystalline $Li_2MnO_3$ than highly crystalline one. Moreover, the addition of buffer material such as MnO(OH) into cathode causes to reduce the morphological and structural changes of layered $Li_2MnO_3$ and increase the discharge capacity and cycleability.

Enhanced Electrochemical Properties of Surface Modified LiMn2O4 by Li-Fe Composites for Rechargeable Lithium Ion Batteries

  • Shi, Jin-Yi;Yi, Cheol-Woo;Liang, Lianhua;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.309-314
    • /
    • 2010
  • The surface modified $LiMn_2O_4$ materials with Li-Fe composites were prepared by a sol-gel method to improve the electrochemical performance of $LiMn_2O_4$ and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and transmission electron microscopy (TEM)-EDS. XRD results indicate that all the samples (modified and pristine samples) have cubic spinel structures, and XRD, XPS, and TEM-EDS data reveal the formation of $Li(Li_xFe_xMn_{2-2x})O_4$ solid solution on the surface of particles. For the electrochemical properties, the modified material demonstrated dramatically enhanced reversibility and stability even at elevated temperature. These improvements are attributed to the formation of the solid solution, and thus-formed solid solution phase on the surface of $LiMn_2O_4$ particle reduces the dissolution of Mn ion and suppresses the Jahn-Teller effect.

Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes

  • Kamenskii, Mikhail A.;Eliseeva, Svetlana N.;Volkov, Alexey I.;Kondratiev, Veniamin V.
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.177-185
    • /
    • 2022
  • Electrochemical properties of LiMn2O4 cathode were investigated in three types of Zn-containing electrolytes: lithium-zinc sulfate electrolyte (1M ZnSO4 / 2M Li2SO4), zinc sulfate electrolyte (2MZnSO4) and lithium-zinc-manganese sulfate electrolyte (1MZnSO4 / 2MLi2SO4 / 0.1MMnSO4). Cyclic voltammetry measurements demonstrated that LiMn2O4 is electrochemically inactive in pure ZnSO4 electrolyte after initial oxidation. The effect of manganese (II) additive in the zinc-manganese sulfate electrolyte on the electrochemical performance was analyzed. The initial capacity of LiMn2O4 is higher in presence of MnSO4 (140 mAh g-1 in 1 M ZnSO4 / 2 M Li2SO4 / 0.1 M MnSO4 and 120 mAh g-1 in 1 M ZnSO4 / 2MLi2SO4). The capacity increase can be explained by the electrodeposition of MnOx layer on the electrode surface. Structural characterization of postmortem electrodes with use of XRD and EDX analysis confirmed that partially formed in pure ZnSO4 electrolyte Zn-containing phase leads to fast capacity fading which is probably related to blocked electroactive sites.

리튬 2차 전지의 양극재료로 사용되는 스피넬형 망간산화물의 충방전 특성 (Cycle Performances of Spinel-type $Li_xMn_2O_4$ in 4V Lithium Rechargeable Cells)

  • 장동훈;오승모
    • 대한화학회지
    • /
    • 제42권1호
    • /
    • pp.122-134
    • /
    • 1998
  • 리튬 2차 전지의 양극재료로 사용되는 스피넬형 망간산화물$(Li_xMn_2O_4)$의 전기화학적 특성과 스피넬 전극에서 용량 감소가 일어나는 원인들에 대해 알아보았고, 용량감소를 억제할 수 있는 방안들을 제시하였다. 스피넬 전극의 가역성은 스피넬 산화물의 합성방법에 따른 순도, 입자크기 및 입자크기 분포, 전극극판을 구성하는 활물질, 카본 도전재 및 결합제의 상대적인 함량 그리고 극판의 미세구조 등에 의해 결정된다. 또한 전해액을 구성하고 있는 유기용매와 리튬염의 종류도 스피넬 전극의 충방전특성에 중요한 영향을 미친다. 스피넬의 합성단계에서는 불순물의 생성과 양이온 자리바꿈(cation mixing) 등을 최소화하여야 한다. 극판의 제조시 도전재의 양은 최소화하여야 하나 스피넬의 전도도가 작으므로 도전재의 양이 너무 적으면 극판의 저항에 의한 분극손실이 크다. 결합제는 극판 구성요소의 분산도와 기계적 강도의 측면에서 최적화되어야 한다. 액체전해질로 carbonate 계열의 용매에 fluorine을 포함하고 있는 리튬염을 사용할 경우에 전해액의 산화와 스피넬의 용해 정도가 적어 양극의 용량감소가 적다. 또한, 표면적이 크고 입자크기가 작은 도전재를 사용할 경우 분극손실은 적으나 잔해질의 분해반응이 심하므로 이들 사이에 적절한 trade-off가 요구된다.

  • PDF

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

구형 스피넬계 LiMxMn2-xO4 (M = Al, Mg, B) 양극소재의 입자치밀도와 전지성능간의 상관관계에 대한 연구 (Relationship between Particle Density and Electrochemical Properties of Spherical LiMn2-xMxO4 (M = Al, Mg, B) Spinel Cathode Materials)

  • 김경희;정태규;송준호;김영준
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.67-73
    • /
    • 2012
  • 본 연구에서는 습식분쇄, 구형화 분무건조 및 열처리 공정을 통해 구형의 $LiMn_{2-x}M_xO_4$(M = Al, Mg, B) 스피넬계 양극소재를 합성하고, 이의 전기화학적 성능을 평가하였다. $MnO_2$ (Tosoh, 91.94%), $Li_2CO_3$ (SQM, 97%), $MgCO_3$ (Aldrich, 99%), $Al(OH)_3$ (Aldrich, 99%) 및 $B_2O_3$ (Aldrich, 99%)를 원료로 사용하였으며, 분무건조공정에서 전구체의 구형화도 증가를 위해 PAAH 바인더를 첨가하였다. 200~500 nm 크기로 분쇄된 혼합 슬러리 용액으로부터 분무건조법을 통해 구형의 전구체를 제조하고, 이를 다양한 조건에서 열처리하여 최종 스피넬계 $LiMn_{2-x}M_xO_4$ (M = Al, Mg, B) 양극소재를 제조하였다. 제조된 구형의 $LiMn_{2-x}M_xO_4$ (M = Al, Mg, B) 양극재료는 이종원소 치환량, 특히 Boron 치환량에 따라 입자 표면 및 내부의 치밀도가 변화하는 것을 확인할 수 있었으며, 치밀도가 증가함에 따라 소재의 출력특성이 향상되었으며, 최적 조성의 양극소재는 상온 5 C 용량이 0.2 C 용량 대비 90% 이상이 됨을 확인하였다. 또한 표면의 치밀도도 증가함에 따라 $60^{\circ}C$ 고온 충방전 조건에서 수명특성이 향상되어 500회 사이클 이후에도 초기용량의 80% 이상을 유지하였다.

Effect of Calcination Temperature on the Structure and Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials

  • Ju, Seo Hee;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.59-62
    • /
    • 2013
  • Spinel $LiMn_{1.5}Ni_{0.5}O_4$ cathode powders with different morphologies were synthesized by a co-precipitation method using oxalic acid. The calcination temperature affected the morphologies, crystalline structure and electrochemical properties of the $LiMn_{1.5}Ni_{0.5}O_4$ powders. The $LiMn_{1.5}Ni_{0.5}O_4$ powders obtained at a calcination temperature of $850^{\circ}C$ exhibited the highest initial discharge capacity with good capacity retention and high rate capability.

Change of Electrochemical Characteristics Due to the Fe Doping in Lithium Manganese Oxide Electrode

  • Ju Jeh Beck;Kang Tae Young;Cho Sung Jin;Sohn Tae Won
    • 전기화학회지
    • /
    • 제7권3호
    • /
    • pp.131-137
    • /
    • 2004
  • Sol-gel method which provides better electrochemical and physiochemical properties compared to the solid-state method was used to synthesize the material of $LiFe_yMn_{2-y}O_4$. Fe was substituted to increase the structural stability so that the effects of the substitution amount and sintering temperature were analyzed. XRD was used for the structural analysis of produced material, which in turn, showed the same cubic spinel structure as $LiMn_2O_4$ despite the substitution of $Fe^{3+}$. During the synthesis of $LiFe_yMn_{2-y}O_4$, as the sintering temperature and the doping amount of Fe(y=0.05, 0.1, 0.2)were increased, grain growth proceeded which in turn, showed a high crystalline and a large grain size, certain morphology with narrow specific surface area and large pore volume distribution was observed. In order to examine the ability for the practical use of the battery, charge-discharge tests were undertaken. When the substitution amount of $Fe^{3+}\;into\;LiMn_2O_4$ increased, the initial discharge capacity showed a tendency to decrease within the region of $3.0\~4.2V$ but when charge-discharge processes were repeated, other capacity maintenance properties turned out to be outstanding. In addition, when the sintering temperature was $800\~850^{\circ}C$, the initial capacity was small but showed very stable cycle performance. According to EVS(electrochemical voltage spectroscopy) test, $LiFe_yMn_{2-y}O_4(y=0,\;0.05,\;0.1,\;0.2)$ showed two plateau region and the typical peaks of manganese spinel structure when the substitution amount of $Fe^{3+}$ increased, the peak value at about 4.15V during the charge-discharge process showed a tendency to decrease. From the previous results, the local distortion due to the biphase within the region near 4.15V during the lithium extraction gave a phase transition to a more suitable single phase. When the transition was derived, the discharge capacity decreased. However the cycle performance showed an outstanding result.