Browse > Article
http://dx.doi.org/10.5714/CL.2018.28.087

Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material  

Lee, Dong-Hee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Ryu, Taegong (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
Shin, Junho (Department of Biological Engineering, Inha University)
Kim, Young Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Carbon letters / v.28, no., 2018 , pp. 87-95 More about this Journal
Abstract
This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than -0.4 V and to the Freundlich isotherm at electrical potentials higher than -0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of -1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of $22.61kJ\;mol^{-1}$ during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.
Keywords
lithium recovery; lithium manganese oxide; electrosorption equilibrium; kinetic; isotherm;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Diouf B, Pode R. Potential of lithium-ion batteries in renewable energy. Renewable Energy, 76, 375 (2015). https://doi.org/10.1016/j.renene.2014.11.058.   DOI
2 Ren G, Ma G, Cong N. Review of electrical energy storage system for vehicular applications. Renewable Sustainable Energy Rev, 41, 225 (2015). https://doi.org/10.1016/j.rser.2014.08.003.   DOI
3 Scrosati B, Hassoun J, Sun YK. Lithium-ion batteries: a look into the future. Energy Environ Sci, 4, 3287 (2011). https://doi.org/10.1039/C1EE01388B.   DOI
4 Gruber PW, Medina PA, Keoleian GA, Kesler SE, Everson MP, Wallington TJ. Global lithium availability. J Ind Ecol, 15, 760 (2011). https://doi.org/10.1111/j.1530-9290.2011.00359.x.   DOI
5 Meshram P, Pandey BD, Mankhand TR. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy, 150, 192 (2014). https://doi.org/10.1016/j.hydromet.2014.10.012.   DOI
6 Shuva MAH, Kurny ASW. Hydrometallurgical recovery of value metals from spent lithium ion batteries. Am J Mater Eng Technol, 1.8 (2013). https://doi.org/10.12691/materials-1-1-2
7 Wang HJ, Xi XK, Kleinhammes A, Wu Y. Temperature-induced hydrophobic-hydrophilic transition observed by water adsorption. Science, 322, 80 (2008). https://doi.org/10.1126/science.1162412.   DOI
8 Mossad M, Zou L. A study of the capacitive deionisation performance under various operational conditions. J Hazard Mater, 213-214, 491 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.036.   DOI
9 Boparai HK, Joseph M, O'Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater, 186, 458 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.029.   DOI
10 Wang L, Meng CG, Han M, Ma W. Lithium uptake in fixed-pH solution by ion sieves. J Colloid Interface Sci, 325, 31 (2008). https://doi.org/10.1016/j.jcis.2008.05.005.   DOI
11 Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater. Ind Eng Chem Res, 41, 4281 (2002). https://doi.org/10.1021/ie010847j.   DOI
12 Hong HJ, Park IS, Ryu T, Ryu J, Kim BG, Chung KS. Granulation of $Li_{1.33}Mn_{1.67}O_4$(LMO) through the use of cross-linked chitosan for the effective recovery of $Li^+$ from seawater. Chem Eng J, 234, 16 (2013). https://doi.org/10.1016/j.cej.2013.08.060.   DOI
13 Park MJ, Nisola GM, Beltran AB, Torrejos REC, Seo JG, Lee SP, Kim H, Chung WJ. Recyclable composite nanofiber adsorbent for $Li^+$ recovery from seawater desalination retentate. Chem Eng J, 254, 73 (2014). https://doi.org/10.1016/j.cej.2014.05.095.   DOI
14 Sagara F, Ning WB, Yoshida I, Ueno K. Preparation and adsorption properties of ${\lambda}-MnO_2$-cellulose hybrid-type ion-exchanger for lithium ion. Application to the enrichment of lithium ion from seawater. Sep Sci Technol, 24, 1227 (1989). https://doi.org/10.1080/01496398908049899.   DOI
15 Chung K, Lee J, Kim W, Kim S, Cho K. Inorganic adsorbent containing polymeric membrane reservoir for the recovery of lithium from seawater. J Membr Sci, 325, 503 (2008). https://doi.org/10.1016/j.memsci.2008.09.041.   DOI
16 Feng Q, Miyai Y, Kanoh H, Ooi K. Lithium (1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites. Langmuir, 8, 1861 (1992). https://doi.org/10.1021/la00043a029.   DOI
17 Ryu T, Ryu JC, Shin J, Lee DH, Kim YH, Chung KS. Recovery of lithium by an electrostatic field-assisted desorption process. Ind Eng Chem Res, 52, 13738 (2013). https://doi.org/10.1021/ie401977s.   DOI
18 Ooi K, Miyai Y, Katoh S, Maeda H, Abe M. Topotactic lithium (1+) insertion to. lambda.-manganese dioxide in the aqueous phase. Langmuir, 5, 150 (1989). https://doi.org/10.1021/la00085a028.   DOI
19 Chitrakar R, Kanoh H, Makita Y, Miyai Y, Ooi K. Synthesis of spinel-type lithium antimony manganese oxides and their Li+ extraction/ ion insertion reactions. J Mater Chem, 10, 2325 (2000). https://doi.org/10.1039/B002465L.   DOI
20 Shi X, Zhou D, Zhang Z, Yu L, Xu H, Chen B, Yang X. Synthesis and properties of $Li_{1.6}Mn_{1.6}O_4$ and its adsorption application. Hydrometallurgy, 110, 99 (2011). https://doi.org/10.1016/j.hydromet.2011.09.004.   DOI
21 Ryu T, Lee DH, Ryu JC, Shin J, Chung KS, Kim YH. Lithium recovery system using electrostatic field assistance. Hydrometallurgy, 151, 78 (2015). https://doi.org/10.1016/j.hydromet.2014.11.005.   DOI
22 Biesheuvel PM, van der Wal A. Membrane capacitive deionization. J Membr Sci, 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043.   DOI
23 Lee JH, Ahn HJ, Cho D, Youn JI, Kim YJ, Oh HJ. Effect of surface modification of carbon felts on capacitive deionization for desalination. Carbon Lett, 16, 93 (2015). https://doi.org/10.5714/CL.2015.16.2.093.   DOI
24 Lee DH, Ryu T, Shin J, Ryu JC, Chung KS, Kim YH. Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system. Hydrometallurgy, 173, 283 (2017). https://doi.org/10.1016/j.hydromet.2017.09.005.   DOI
25 Ryu T, Shin J, Ryu J, Park I, Hong H, Kim BG, Chung KS. Preparation and characterization of a cylinder-type adsorbent for the recovery of lithium from seawater. Mater Trans, 54, 1029 (2013). https://doi.org/10.2320/matertrans.M2013028.   DOI
26 Abbasi S, Noorizadeh H. Adsorption of Nile Blue A from aqueous solution by different nanostructured carbon adsorbents. Carbon Lett, 23, 30 (2017). https://doi.org/10.5714/CL.2017.23.030.
27 Han Y, Kim H, Park J. Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Chem Eng J, 210, 482 (2012). https://doi.org/10.1016/j.cej.2012.09.019.   DOI
28 Ma LW, Chen BZ, Chen Y, Shi XC. Preparation, characterization and adsorptive properties of foam-type lithium adsorbent. Microporous Mesoporous Mater, 142, 147 (2011). https://doi.org/10.1016/j.micromeso.2010.11.028.   DOI
29 Kim YJ, Choi JH. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Sep Purif Technol, 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026.   DOI
30 Li H, Gao Y, Pan L, Zhang Y, Chen Y, Sun Z. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Res, 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026.   DOI
31 Wan MW, Kan CC, Rogel BD, Dalida MLP. Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr Polym, 80, 891 (2010). https://doi.org/10.1016/j.carbpol.2009.12.048.   DOI
32 Ho Y. Review of second-order models for adsorption systems. J Hazard Mater, 136, 681 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.043.   DOI
33 Biesheuvel PM. Thermodynamic cycle analysis for capacitive deionization. J Colloid Interface Sci, 332, 258 (2009). https://doi.org/10.1016/j.jcis.2008.12.018.   DOI
34 Ho YS, McKay G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf Environ Prot, 76, 183 (1998). https://doi.org/10.1205/095758298529326.   DOI
35 Chen Z, Song C, Sun X, Guo H, Zhu G. Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes. Desalination, 267, 239 (2011). https://doi.org/10.1016/j.desal.2010.09.033.   DOI
36 Huang SY, Fan CS, Hou CH. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. J Hazard Mater, 278, 8 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.074.   DOI
37 Biesheuvel PM, Zhao R, Porada S, van der Wal A. Theory of membrane capacitive deionization including the effect of the electrode pore space. J Colloid Interface Sci, 360, 239 (2011). https://doi.org/10.1016/j.jcis.2011.04.049.   DOI
38 Li H, Pan L, Zhang Y, Zou L, Sun C, Zhan Y, Sun Z. Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes. Chem Phys Lett, 485, 161 (2010). https://doi.org/10.1016/j.cplett.2009.12.031.   DOI
39 Han L, Karthikeyan KG, Anderson MA, Wouters JJ, Gregory KB. Mechanistic insights into the use of oxide nanoparticles coated asymmetric electrodes for capacitive deionization. Electrochim Acta, 90, 573 (2013). https://doi.org/10.1016/j.electacta.2012.11.069.   DOI