• Title/Summary/Keyword: Lithiation

Search Result 51, Processing Time 0.036 seconds

Atomistic Investigation of Lithiation Behaviors in Silicon Nanowires: Reactive Molecular Dynamics Simulation

  • Jeong, Hyeon;Ju, Jae-Yong;Jo, Jun-Hyeong;Lee, Gwang-Ryeol;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.160.2-160.2
    • /
    • 2014
  • Recently silicon has attracted intense interest as a promising anode material of lithium-ion batteries due to its extremely high capacity of 4200 mA/g (for Li4.2Si) that is much higher than 372 mAh/g (for LiC6) of graphite. However, it seriously suffers from large volume change (even up to 300%) of the electrode upon lithiation, leading to its pulverization or mechanical failure during lithiation/delithiation processes and the rapid capacity fading. To overcome this problem, Si nanowires have been considered. Use of such Si nanowires provides their facile relaxation during lithiation/delithiation without mechanical breaking. To design better Si electrodes, a study to unveil atomic-scale mechanisms involving the volume expansion and the phase transformation upon lithiation is critical. In order to investigate the lithiation mechanism in Si nanowires, we have developed a reactive force field (ReaxFF) for Si-Li systems based on density functional theory calculations. The ReaxFF method provides a highly transferable simulation method for atomistic scale simulation on chemical reactions at the nanosecond and nanometer scale. Molecular dynamics (MD) simulations with the ReaxFF reproduces well experimental anisotropic volume expansion of Si nanowires during lithiation and diffusion behaviors of lithium atoms, indicating that it would be definitely helpful to investigate lithiation mechanism of Si electrodes and then design new Si electrodes.

  • PDF

Evaluation of Crack Propagation in Silicon Anode using Cohesive Zone Model during Two-phase Lithiation (접착영역 모델을 사용한 2상 리튬 이온 충전 시 실리콘 음극 전극의 균열진전 해석)

  • Kim, Yong-Woo;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.297-304
    • /
    • 2019
  • In this research, crack propagation in a silicon anode during two-phase lithiation was evaluated using a cohesive zone model. The phase transition from crystalline silicon to lithiated silicon causes compressive yielding due to the high volume expansion rate. Li-ion diffuses from the surface of the silicon to its core, and the complex deformation mechanisms during lithiation cause tensile hoop stress along the surface. The Park-Paulino-Roesler (PPR) potential-based cohesive zone model that guarantees consistent energy dissipation in mixed-mode fracture was adopted to simulate edge crack propagation. It was confirmed that the edge crack propagation characteristics during lithiation from the FEM simulation results coincided with the real experimental results. Crack turning observed from real experiments could also be predicted by evaluating the angles of maximum tensile stress directions.

Lithiation and Carboxylation of N, N-diisopropyl-4-methylbenzamide in Ether Solution (N,N-diisopropyl-4-methylbenzamide의 ether용액중 리티움화 및 카복실화 반응에 관하여)

  • 김기엽;전영무
    • Electrical & Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.103-108
    • /
    • 1989
  • 새로운 전도성물질 중간체 합성기술의 기초연구의 일환으로 N, N-dialkylbenzamide를 ether 용액에서 lithiation 및 carboxylation시킨 결과, 저온 (-78.deg.~-20.deg.), 짧은 반응 시간에서는 방향족 고리 Ortho-위치에 carboxylation이 일어났고 상대적 고온 (0.deg.이상)에서는 아미드의 카보닐에 치환된 ketone이 얻어졌다. 이는 온도 조건에 따라 두 반응이 상호 경쟁적으로 진행되기 때문이라고 사료된다.

  • PDF

Effects of Li-Sources on Microstructure of Metallurgically Pre-Lithiated SiOx for Li-Ion Battery's Anode (야금학적으로 Pre-Lithiation된 리튬이온전지 음극용 SiOx의 리튬소스가 미세구조에 미치는 영향)

  • Lee, Jae Young;Lee, Bora;Kim, Nak-Won;Jang, Boyun;Kim, Junsoo;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • The effect of various lithium sources such as LiCl, LiOH, and Li-metal on the microstructure and electrochemical properties of granulated $SiO_x$ powders were investigated. Various lithium sources were metallurgically added for a passive pre-lithiation of $SiO_x$ to improve its low initial coulombic efficiency. In spite of using the same amount of Li in various sources, as well as the same process conditions, different lithium silicates were obtained. Moreover, irreversible phases were formed without reduction of $SiO_x$, which might be from additional oxygen incorporation during the process. Accordingly, there were no noticeable electrochemical enhancements. Nevertheless, the $Li_4SiO_4$ phase changes the initial electrochemical reaction, and consequently the relationship between the microstructure and electrochemical properties of metallurgically pre-lithiated $SiO_x$ could provide a guideline for the optimization of the performance of lithium ion batteries.

Electrochemical Properties of 3D Cu-Sn Foam as Anode for Rechargeable Lithium-Ion Battery (3D-foam 구조의 구리-주석 합금 도금층을 음극재로 사용한 리튬이온배터리의 전기화학적 특성 평가)

  • Jung, Minkyeong;Lee, Gibaek;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.47-53
    • /
    • 2018
  • Sn-based lithium-ion batteries have low cost and high theoretical specific capacity. However, one of major problem is the capacity fading caused by volume expansion during lithiation/delithiation. In this study, 3-dimensional foam structure of Cu-Sn alloy is prepared by co-electrodeposition including large free space to accommodate the volume expansion of Sn. The Cu-Sn foam structure exhibits highly porous and numerous small grains. The result of EDX mapping and XPS spectrum analysis confirm that Cu-Sn foam consists of $SnO_2$ with a small quantity of CuO. The Cu-Sn foam structure electrode shows high reversible redox peaks in cyclic voltammograms. The galvanostatic cell cycling performances show that Cu-Sn foam electrode has high specific capacity of 687 mAh/g at a current rate of 50 mA/g. Through SEM observation after the charge/discharge processes, the morphology of Cu-Sn foam structure is mostly maintained despite large volume expansion during the repeated lithiation/delithiation reactions.

Synthesis of One-dimensional Spinel LiMn2O4 Nanostructures as a Positive Electrode in Lithium Ion Battery

  • Lee, Hyun-Wook;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.379-383
    • /
    • 2011
  • This paper presents the synthesis of one-dimensional spinel $LiMn_2O_4$ nanostructures using a facile and scalable two-step process. $LiMn_2O_4$ nanorods with average diameter of 100 nm and length of 1.5 ${\mu}m$ have been prepared by solid-state lithiation of hydrothermally synthesized ${\beta}$-$MnO_2$ nanorods. $LiMn_2O_4$ nanowires with diameter of 10 nm and length of several micrometers have been fabricated via solid-state lithiation of ${\beta}$-$MnO_2$ nanowires. The precursors have been lithiated with LiOH and reaction temperature and pressure have been controlled. The complete structural transformation to cubic phase and the maintenance of 1-D nanostructure morphology have been evaluated by XRD, SEM, and TEM analysis. The size distribution of the spinel $LiMn_2O_4$ nanorods/wires has been similar to the $MnO_2$ precursors. By control of reaction pressure, cubic 1-D spinel $LiMn_2O_4$ nanostructures have been fabricated from tetragonal $MnO_2$ precursors even below $500^{\circ}C$.

Influence of Lithiation on Nanomechanical Properties of Silicon Nanowires Probed with Atomic Force Microscopy

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.110-110
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value for lithiated silicon nanowire and a higher value for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value than that of the Si nanowire substrate by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The Young's modulus obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively higher value than lithiated silicon nanowire due to the elastically soft amorphous structures. The frictional forces acting on the tip sliding on the surface of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

  • PDF

Expanded Graphite Negative Electrode for Lithium-ion Batteries

  • Yoo, Hyun-D.;Ryu, Ji-Heon;Park, Seong-Ho;Park, Yu-Won;Ka, Bok-H.;Oh, Seung-M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • A series of expanded graphites is prepared from graphite oxide by changing the heat-treatment temperature, and their lithiation/de-lithiation mechanism and rate performance are examined. A featureless sloping profile is observed in their charge-discharge voltage and dilatometry profiles, which is contrasted by the stepwise plateau-like profiles observed with the pristine graphite. With an increase in the heat-treatment temperature from $250^{\circ}C$ to $850^{\circ}C$, the interlayer distance becomes smaller whereas the electric conductivity becomes larger, both of which are resulted from a removal of foreign atoms (mainly oxygen) from the interlayer gaps. The expanded graphite that is prepared by a heat-treatment at $450^{\circ}C$ delivers the best rate performance, which seems to be a trade-off between the $Li^+$ ion diffusivity that is affected by the interlayer distance and electrical conductivity.