• Title/Summary/Keyword: Liquids

Search Result 828, Processing Time 0.044 seconds

Determination of Surface Energy by Means of Home-Made Goniometer and Image Analyzing Software for Contact Angle Measurement (수제 접촉각 측정기와 영상 분석 프로그램을 이용한 표면에너지의 측정)

  • Cho, Seo-Rin;Cho, Han-Gook
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.432-438
    • /
    • 2013
  • We report a contact angle goniometer that can be easily assembled and used in high school and general chemistry experiments. It consists of an LED flash, a sample stand, and a camera fixed on an optical bread board, and the sample area is covered to block light from outside with a box with holes on both sides. ImageJ, free image analyzing software and a JAVA plugin (Drop_analysis) were used to determine the contact angle of liquid drop resting on solid surface. The contact angles of various liquids were successfully measured on various surfaces. The solid surface energies have also been determined using the Owen-Wendt method from the contact angles of $H_2O$ and $CH_2I_2$. The results reasonably agree with the previously reported values, showing the surface characteristics and modification as well as the dispersive and polar contributions. These contact angle goniometer and method for determination of the contact angle and surface energy can be applied to observation of various surface properties including wettability, hydrophilicity, and water repelling. Students can learn how the surface properties are related to the intermolecular interactions and gain experience about the equilibrium between the related forces, optics, and mathematical derivations.

Study of characteristics of Tenebrio molitor fermented liquids using Aspergillus oryzae as a flavoring material (황국곰팡이를 이용한 갈색거저리 발효액의 특성 및 조미소재 이용가능성 탐색)

  • Lee, Ji-Won;Son, Yang-Ju;Hwang, In-Kyeong;Park, Hyo-Nam;Kim, Soo-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.286-295
    • /
    • 2017
  • This study was performed to develop a liquid flavoring material from Tenebrio molitor larva by using Aspergillus oryzae. T. molitor with 1% A. oryzae for 48 hours yielded the highest protease activity. Different salt concentrations and rice flour addition affected the fermentation characteristics for 90 days. LN (low salt, rice flour non-addition) yielded high protease activity, and total nitrogen and amino-type nitrogen contents. LN showed Glu accounting to 15.16% of the free amino acids and yielded high scores of sweet and savory taste, and overall acceptance after 90 days. Rice flour addition group showed high content of total and reducing sugars with high amylase activity, however, low salt concentration had more effect on sensory acceptance than rice flour addition had (p<0.05). All samples had total acidity <1% and LN (90) showed the highest browning index and aroma intensity, as noted from maillard reaction, as well as good sensory acceptance.

Effect of Surfactant on Reductive Dechlorination of Trichloroethylene by Zero-Valent Iron (양이온-비이온 혼합계면활성제의 첨가가 영가철을 이용한 TCE환원에 미치는 영향)

  • Shin, Min-Chul;Choi, Hyun-Dock;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2007
  • Trichloroethylene (TCE) is a representative dense non-aqueous phase liquid (DNAPL) and has contaminated substance environments including soil and groundwater due to leakage and careless. DNPAL, has been treated by surfactant-enhanced aquifer remediation (SEAR). After application of SEAR, groundwater contains still surfactant as well as little amount of residual TCE. Permeable reactive barrier using zero-valent iron (ZW) is a very effective technology to treat the residual TCE in groundwater. In this study, the effect of the residual surfactant on the reductive dechlorination of residual TCE was investigated using ZVI. Mixed surfactant composed of nonioinic surfactant and cationic surfactant was used as a residual surfactant because of toxicity and enhancement of dechlorination rate. Structure of surfactant affected significantly the decrhlorination rate of TCE. Mixed surfactant system with relatively short polyethylene oxide (PEO) chain in nonionic surfactant, cationic surfactant did not affect TCE dechlorination rate. However, mixed surfactant system with relatively long PEO chain in nonionic surfactant shows that TCE dechlorination rate was significantly dependent on fraction of cationic surfactant and HLB of nonionic surfactant. Cationic surfactant with trimethyl ammonium group enhanced reductive dechlorination rate compared to that surfactant with pyridinium group.

Transient Liquid Phase Sintering of LCCC(La0.8Ca0.2Cr0.9Co0.1O3-δ) with the Addition of CaCrO4 (CaCrO4 첨가에 따른 LCCC(La0.8Ca0.2Cr0.9Co0.1O3-δ)의 전이액상소결거동)

  • Lee, Ho-Chang;Kang, Bo-Kyung;Lee, Joon-Hyung;Heo, Young-Woo;Kim, Jae-Yuk;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In this study, in order to improve densification of $La_{0.8}Ca_{0.2}Cr_{0.9}Co_{0.1}O_{3-\delta}$ (LCCC), which is known for one of the most proper candidate interconnector materials in the solid oxide fuel cells, $CaCrO_4$ was prepared via solid oxide synthesis route and added to the LCCC with different amount and particle sizes. As the amount of the $CaCrO_4$ increased, porosity of the sintered samples increased, and the pore size was proportional to the particle size of the $CaCrO_4$. This supports the fact that the $CaCrO_4$ phase forms liquid during sintering and permeate into the matrix leaving behind large pores. Then the liquid reacts with the matrix through the solid solution. However, when the samples were sintered with a slow ramp up rates, the porosity decreased. This is thought to be caused by the progressive solid solution of $CaCrO_4$ before the temperature reach to the melting temperature and forms a fluent amount of liquids. The sintering behavior of the LCCC with the addition of $CaCrO_4$ was analyzed through the transient liquid phase sintering on the basis of the microstructure observation and phase identification by x-ray diffraction.

Calculation of non-condensable gases released in a seawater evaporating process (해수 증발과정에서의 기체방출량 계산)

  • Jeong, Kwang-Woon;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.182-190
    • /
    • 2017
  • All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Feasibility Study on the Applicability of Fly Ash as a Barrier Material in Containment System

  • Myung Dong-Il;Lee Gwang-Hun;Lee Seung-Hak;Park Jun-Boum;Kim Hyung-Suk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.202-210
    • /
    • 2005
  • In this study, the fly ash was employed as a possible alternative to the bentonite for its high sorption capacity against cationic heavy metal. To consider the constituents of barrier possibly used, the specimens were mixed with different material contents (fly ash : weathered soil : bentonite), then sorption test was performed. Also the specimens were molded on the wet side of optimum moisture contents like mixing ratio of sorption test and their hydraulic conductivities were measured in flexible-wall permeameters. And to confirm the effect of dissolved cations, the hydraulic conductivity tests were repeated by converting the permeant liquids from water to $Cd^{2+}$ solution. Finally, the Cd-concentration at the effluent was analyzed for 500hrs to compare the effectiveness of each specimen in contaminant retardation. Test results showed that the more the ratio of fly ash increase, the more Kd value increase, and the hydraulic conductivity of weathered soil/bentonite (95:5) mixture was the lowest $(2.9*10^{-8}cm/sec)$, and specimens made of fly ash and fly ash/weathered soil mixtures showed similar hydraulic conductivity. Although the permeant liquid was changed from water to $Cd^{2+}$ solution, the hydraulic conductivity of all specimens except for weathered soil maintained similarly like before. Consequently, the initial breakthrough point of Cd in weathered soil specimen was observed at about 5hrs after the test started while that of fly ash specimens was not observed during the whole test period of 500hrs. The results implied that fly ash had a sufficient retardation capacity against contaminant transport possibly by its high sorption capacity although it showed little effect on the reduction of hydraulic conductivity. Based on the test results, it could be concluded that the fly ash can be possibly used as a suitable barrier material in containment system to attenuate the contaminant transport for its high retardation capacity and for the low cost.

  • PDF

Effects of Oxyfluorination on Surface Graft Polymerization of Low Density Polyethylene Film and Its Surface Characteristics (함산소불소화가 저밀도 폴리에틸렌 표면의 그라프트 중합 및 그 표면 특성에 미치는 영향)

  • Yun, Seok-Min;Woo, Sang-Wook;Jeong, Eui-Gyung;Bai, Byong-Chol;Park, In-Jun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.343-348
    • /
    • 2010
  • The surface of low density polyethylene (LDPE) film was oxyfluorinated under different reaction conditions to introduce hydroperoxide groups and change surface characteristics. Hydroperoxide functional groups created by oxyfluorination were used as active sites for graft polymerization with hydrophobic monomer, acryl amide (AM), and hydrophilic monomer, methyl methacrylate (MMA) to carry out the second modification of the LDPE film surface. The surface properties of the OFPE films and grafted OFPE films were characterized by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, ATR-IR, contact angle measurement and DSC. From the results of DPPH method, the amount of hydroperoxide groups on the oxyfluorinated LDPE film continuously increased as the total pressure in the oxyfluorination and the partial pressure of fluorine gas increased. The water contact angle and surface free energy measurements showed that hydrophilic liquid (water) contact angle on LDPE film surface decreased with hydrophilic AM grafting and hydrophobic liquid (methylene diiodide) contact angle on LDPE film surface decreased with hydrophobic MMA grafting. These were attributed to AM or MMA monomer grafting and the wettability of LDPE filmsurface to hydrophilic and hydrophobic liquids were improved.

Reversely Zoned Compositional Variations and their Origins of the Andong Pluton, Andong Batholith, Korea (안동심성암체의 역누대 초성변화와 그 성인)

  • 황상구;이보현
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.75-95
    • /
    • 2002
  • The Andong pluton in the Andong Batholith is composed of comagmatic plutonic rocks, in which the lithofacies comprise hornblende biotite tonalite in the central paft biotite granodiorite in the marginal paft and porphyritic biotite granite at the topside (noJthea~tern paft) of the pluton. The pluton is petrographically and petrochemically zoned, having more mafic center than margin and topside. Distribution pallern of the lithofacies represents a reverse zoning in the pluton. Modal and chemical data in the pluton show progressive and gradual compositional variations from the centrer via the margin to the topside. Quartz and K-teldspar increase toward the topside of the pluton, whereas hornblende, biotite and color index increase toward the center. The bulk composition in the pluton is also reversely zoned, with high $Si0_2$ and $K_{2}O$ in the topside facies, and high MnO, CaO, $Ti0_2$, $Fe_{2}O_{3}$t, MgO and $P_{2}O_{5}$ in the central facies. The reverse zoning is also evident in higher Cr. V, Ni, Sc and Sr of the more mafic tonalite in the interior. The reversely zoned pluton results from remobilization (resurgence) of the lower more mafic compositional zone into the upper more felsic zones of the pluton modified by thennogravitational diffusion and fractional crystallization. In the initial stages of evolution, the pluton was a petrochemical system that fonned chemical compositional zonation with mafic tonalitic magma in the lower. granodioritic one in the middle and granitic one in the upper paft of the magma chamber. Periodic influxes of more mafic magma from the ba~e resulted in mingling of liquids and redistribution of minerals, and may have triggered the remobilil.ation of the lower compositional zone into the upper more felsic zones.

Study of CO2 Absorption Characteristic and Synthesis of 1-(2-methoxyethyl)-3-methylimidazoLium Methanesulfonate Ionic Liquid (1-(2-methoxyethyl)-3-methylimidazolium Methanesulfonate 이온성 액체 합성 및 CO2 흡수 특성 연구)

  • Jin, Yu Ran;Jung, Yoon Ho;Park, So Jin;Baek, Il Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate ionic liquid has been synthesized, characterized and tested with respect to carbon dioxide absorption with the aim to use it as advanced absorbent materials in fossil fuel processing. The ionic liquid was synthesized by a one step method, low cost. The thermal and chemical stability of selected ionic liquid has been investigated by DSC, TGA and the structure was verified by $^1H$-NMR spectroscopy. The solubility of carbon dioxide in the methanesulfonate-based ionic liquids were measured using a high-pressure equilibrium apparatus equipped with a variable-volume view cell at 30, 50 and $70^{\circ}C$ and pressure up to 195 bar. The results show that carbon dioxide solubilities of 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate increased with pressure increasing and temperature decreasing, and the carbon dioxide absorption capacity showed 27.6 $CO_2/IL$(g/kg) at $30^{\circ}C$, 13 bar.