Browse > Article

Effects of Oxyfluorination on Surface Graft Polymerization of Low Density Polyethylene Film and Its Surface Characteristics  

Yun, Seok-Min (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Woo, Sang-Wook (Department of Applied Chemistry, Tokyo Metropolitan University)
Jeong, Eui-Gyung (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Bai, Byong-Chol (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Park, In-Jun (Research Center for Biorefinery, Korea Reserch Institute of Chemical Technology)
Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.21, no.3, 2010 , pp. 343-348 More about this Journal
Abstract
The surface of low density polyethylene (LDPE) film was oxyfluorinated under different reaction conditions to introduce hydroperoxide groups and change surface characteristics. Hydroperoxide functional groups created by oxyfluorination were used as active sites for graft polymerization with hydrophobic monomer, acryl amide (AM), and hydrophilic monomer, methyl methacrylate (MMA) to carry out the second modification of the LDPE film surface. The surface properties of the OFPE films and grafted OFPE films were characterized by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, ATR-IR, contact angle measurement and DSC. From the results of DPPH method, the amount of hydroperoxide groups on the oxyfluorinated LDPE film continuously increased as the total pressure in the oxyfluorination and the partial pressure of fluorine gas increased. The water contact angle and surface free energy measurements showed that hydrophilic liquid (water) contact angle on LDPE film surface decreased with hydrophilic AM grafting and hydrophobic liquid (methylene diiodide) contact angle on LDPE film surface decreased with hydrophobic MMA grafting. These were attributed to AM or MMA monomer grafting and the wettability of LDPE filmsurface to hydrophilic and hydrophobic liquids were improved.
Keywords
LDPE; oxyfluorination; hydroperoxide; DPPH; graft polymerization;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 J. J. Robin, C. Boyer, B. Boutevin, and C. Loubat, Polymer, 49, 4519 (2008).   DOI   ScienceOn
2 P. Wang, K. L. Tan, E. T. Kang, and K. G. Neoh, J. Materials Chem., 11, 783 (2001).   DOI   ScienceOn
3 A. P. Kharitonov, Prog. Org. Coat., 61, 192 (2008).   DOI   ScienceOn
4 G. R. Newkome and C. D. Shreiner, Polymer, 49, 1 (2008).   DOI   ScienceOn
5 R. J. Lagow and J. L. Margrave, Progr. Inorg. Chem., 26, 162 (1979).
6 S. W. Woo, M. Y. Song, J. S. Rho, and Y. S. Lee, J. Ind. Eng. Chem., 11, 55 (2005).   DOI
7 B. K. Lee and J. S. Rho, J. Korean Ind. Eng. Chem., 12, 353 (2001).
8 A. P. Kharitonov and Y. L. Moskvin, J. Fluorine Chem., 91, 87 (1998).   DOI   ScienceOn
9 W. Lu, C. Huang, and M. Roan, Surf. Coat. Tech., 172, 251 (2003).   DOI   ScienceOn
10 N. Hara, H. Fukumoto, and M. Watanabe, B. Chem. Soc. Jepan, 68, 1232 (1995).   DOI   ScienceOn
11 Y. S. Lee, J. Fluorine Chem., 128, 392 (2007).   DOI   ScienceOn
12 Q. Shi, L. C. Zhu, C. L. Cai, J. H. Yin, and G. Costa, Polymer, 47, 1979 (2006).   DOI   ScienceOn
13 G. Zhao, Y. Chen, and X. Wang, Applied Surface Science, 253, 4709 (2007).   DOI   ScienceOn
14 S. D. Kim, J. W. Kim, J. S. Im, Y. H. Kim, and Y. S. Lee, J. Fluorine Chem., 128, 60 (2007).   DOI   ScienceOn
15 D. M. Brewis, J. Adhes. Sci. Technol, 37, 97 (1992).
16 T. Seguchi, T. Yagi, S. Ishikawa, and Y. Sano, Radiat. Phys. Chem., 63, 35 (2002).   DOI   ScienceOn
17 A. Tressaud, E. Durand, C. Labrugère, A. P. Kharitonov, and L. N. Kharitonova, J. Fluorine Chem., 128, 378 (2007).   DOI   ScienceOn
18 M. Anand, J. P. Hobbs, and I. J. Brass, In Organofluorine Chemistry: Principles and commercial Applications, eds. R. E. Banks, B. E. Smart, J. C. Tatlow, 469, Plenum Press, New York (1994).
19 A. P. Kharitonov, R. Taege, G. Ferrier, V. V. Teplyakov, D. A. Syrtsova, and G. H. Koops, J. Fluorine Chem., 126, 251 (2005).   DOI   ScienceOn
20 S. R. J. Oliver, N. Bowden, and G. M. Whitesides, J. Colloid Interface Sci., 224, 425 (2000).   DOI   ScienceOn
21 J. Lei and X. Liao, Eur. Polym. J., 37, 771 (2001).   DOI   ScienceOn
22 Z. Hruska and X. Lepot, J. Fluorine Chem., 105, 87 (2000).   DOI   ScienceOn
23 Y. C. Nho, J. I. Jim, and P. H. Kang, J. Ind. Eng. Chem., 12, 888 (2006).
24 J. I. Kim, P. H. Kang, and Y. C. Nho, J. Korean Ind. Eng. Chem., 12, 800 (2001).
25 M. D. Duca and C. L. Plosceanu, T. Pop, Polym. Degrad. Stab., 61, 65 (1998).   DOI   ScienceOn
26 A. Oshima, Y. Tabata, H. Kudoh, and T. Seguchi, Phys. Chem., 45, 269 (1995).
27 S. M. Cho, Y. C. Lee, S. H. Hwang, S. W. Lee, and S. K. Kim, J. Ind. Eng. Chem., 7, 504 (1996).