• Title/Summary/Keyword: Liquid structure

Search Result 1,708, Processing Time 0.03 seconds

Fabrication of Three-Dimensional Micro-Shell Structures Using Two-Photon Polymerization (이광자 흡수 광중합에 의한 3차원 마이크로 쉘 구조물 제작)

  • Park Sang Hu;Lim Tae Woo;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.998-1004
    • /
    • 2005
  • A nano-stereolithography (NSL) process has been developed for fabrication of 3D shell structures which can be applied to various nano/micro-fluidic devices. By the process, a complicated 3D shell structure on a scale of several microns can be fabricated using lamination of layers with a resolution of 150 nm in size, so it does not require the use of my sacrificial layer or any supporting structure. A layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) induced using a femtosecond laser processing. When the polymerization process is finished, unsolidified liquid state resins can be removed easily by dropping several droplets of ethanol fur developing the fabricated structure. Through this work, some 3D shell structures, which can be applied to various applications such as nano/micro-fluidic devices and MEMS system, were fabricated using the developed process.

Factors Affecting Z-direction Penetration of PVAm Solution into Paper (PVAm 용액의 종이 두께 방향 침투에 영향하는 인자들)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.104-111
    • /
    • 2015
  • Factors influencing penetration of PVAm solution into paper during impregnation were investigated with ultrasonic Penetration Evenness Analyzer (PEA). Paper structure was varied by changing basis weight, freeness of pulp, calendering, and filler addition, and hydrophobicity of paper was varied by adding AKD. In addition, the viscosity of PVAm solution was varied by changing the concentration of PVAm solution. Important factors influencing penetration of PVAm solution into paper were found to be the pore structure and the hydrophobicity of paper, and the viscosity of PVAm solution. Pore structure of paper could be controlled by refining degree and filler addition and hydrophobicity of paper could be controlled by internal sizing. Denser structure of paper, higher hydrophobicity and higher liquid viscosity slowed down the penetration of PVAm solution into paper.

Computational modeling of coupled fluid-structure systems with applications

  • Kerboua, Y.;Lakis, A.A.;Thomas, M.;Marcouiller, L.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.91-111
    • /
    • 2008
  • This paper outlines the development of a computational model in order to analyze the dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane and bending effects of the plate. The structural mass and stiffness matrices are determined using exact integration of governing equations which are derived using a combination of classical plate theory and a finite element approach. The Bernoulli equation and velocity potential function are used to describe the liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented approach for dynamic characteristics such as natural frequency are in agreement to those calculated using other theories and experiments.

Development of Nano-Stereolithography Process for Precise Fabrication of Three-Dimensional Micro-Devices (3차원 마이크로 디바이스 개발을 위한 나노 스테레오리소그래피 공정 개발에 관한 연구)

  • Park Sang-Hu;Lim Tae Woo;Yang Dong-Yol;Yi Shin Wook;Kong Hong-Jin;Lee Kwang-Sup
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.45-49
    • /
    • 2006
  • A nano-stereolithography (NSL) process has been developed for the fabrication of three-dimensional (3D) micro-devices with high spatital resolution of approximately 100 nm. In the NSL process, a complicated 3D structure can be created by stacking layer-by-layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D stacked structure was finished, unsolidified liquid resins were rinsed by ethanol to develop the fabricated structures; then, the polymerized structure was only left on the glass substrate. Through this work, several 3D microstructures such as a micro-channel, shell structures, and photonic crystals were fabricated to evaluate the possibility of the developed system.

A fragmentation database of soyasaponins by liquid chromatography with a photodiode array detector and tandem mass spectrometry

  • Son, Haereon;Mukaiyama, Kyosuke;Omizu, Yohei;Tsukamoto, Chigen
    • Analytical Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • Oleanane-type triterpenoids exist as secondary metabolites in various plants. In particular, soyasaponin, an oleanane-type triterpenoid, is abundant in the hypocotyl of soybean, one of the most widely cultivated crops in the world. Depending on their chemical structure, soyasaponins are categorized as group A saponins or group DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins. The different soyasaponin chemical structures present different health functionalities and taste characteristics. However, conventional phenotype screening of soybean requires a substantial amount of time for functionality of soyasaponins. Therefore, we attempted to use liquid chromatography with a photodiode array detector and tandem mass spectrometry (LC-PDA/MS/MS) for accurately predicting the phenotype and chemical structure of soyasaponins in the hypocotyl of five common soybean natural mutants. In this method, the aglycones (soyasapogenol A [SS-A] and soyasapogenol B [SS-B]) were detected after acid hydrolysis. These results indicated that the base peak and fragmentation differ depending on the chemical structure of soyasaponin with aglycone. Thus, a fragmentation database can help predict the chemical structure of soyasaponins in soyfoods and plants.

Development of Liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth (수지상 우라늄 성장억제를 위한 액체카드뮴 음극구조 개발)

  • Paek, Seung-Woo;Yoon, Dal-Seong;Kim, Si-Hyung;Shim, Jun-Bo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • The LCC (Liquid Cadmium Cathode) structure to be developed for inhibiting the formation and growth of the uranium dendrite has been known as a key part in the electrowinning process for the simultaneous recovering of uranium and TRU (TRans Uranium) elements from spent fuels. A zinc-gallium (Zn-Ga) experimental system which is able to be functional in aqueous condition and normal temperature has been set up to observe the formation and growth phenomena of the metal dendrites on liquid cathode. The growth of the zinc dendrites on the gallium cathode and the performance of the existing stirrer type and pounder type cathode structure were observed. Although the mechanical strength of the dendrites appeared to be weak in the electrolyte and easily crashed by the various cathode structures, it was difficult to effectively submerge the dendrite into the bottom of the liquid cathode. Based on the results of the aqueous phase experiments, a lab-scale electrowinning experimental apparatus which are applicable to the development of LCC srtucture for the electrowinning process was established and the performance tests of the different types of LCC structure were conducted to prohibit the uranium dendrite growth on LCC surface. The experimental results of the stirrer type LCC structures have shown that they could not effectively remove the uranium dendrites growing at the inner side of the LCC crucible and the performances of the paddle and harrow type LCC structure were similar. Therefore a mesh type LCC structure was developed to push down the uranium dendrites to the bottom of the LCC crucible growing on the LCC surface and at the inner side of the crucible. From the experimental results for the performance test of the mesh type LCC structure, the uranium was recovered over 5 wt% in cadmium without the growth of uranium dendrites. After completion of the experiments, solid precipitates of the bottom of the LCC crucible were identified as an intermetallic compound (UCd11) by the chemical analysis.

High Out-of-Plane Alignment of Liquid Crystalline Methacrylate Copolymer Bearing Photoreactive 4-Styrylpyridine Moiety

  • Kwak, Gi-Seop;Kong, Jong-Yun;Kim, Min-Woo;Hyun, Seok-Hee;Kim, Woo-Sik
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.271-275
    • /
    • 2009
  • This paper describes the out-of-plane order of a liquid crystalline(LC) methacrylate copolymer(3) comprised of a methacrylate(1) with a 4-styrylpyridine moiety as the photo-cyclodimerizable group and a benzoate moiety as the mesogenic group in the side chain, and another methacrylate(2) with a 4-(4-methoxyphenyl)benzoate moiety as the mesogenic group. The composition of 1 and 2 units in 3 was estimated to have a molar ratio of 54.2:45.8 by $^{1}H$ NMR spectroscopy. The X-ray diffraction study revealed that the copolymer forms a partial bilayer smectic structure. The copolymer gave rise to a high out-of-plane order parameter of about 0.74 in a wide LC temperature range of $110{\sim}160^{\circ}C$ after linearly polarized, UV light irradiation and subsequent annealing. Moreover, the external reflection IR analysis indicated that excess UV-light irradiation makes the out-of-plane LC structure of the copolymer appear in a higher and wider temperature range.

Predicting Micro-Thickness of Phase Fronts in Propellants (추진제의 마이크로 스케일 상면 두께 예측)

  • Yoh Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-21
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

An Experimental Study on the Effects of Porous Layer Treatment on Evaporative Cooling of an Inclined Surface (다공물질 표면처리가 경사판의 증발냉각에 미치는 영향에 관한 실험적 연구)

  • Lee Dae Young;Lee Jae Wan;Kang Byung Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface forming thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this work, the surface is treated to have thin porous layer on the surface. With this treatment, the liquid can be spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of an inclined surface has been conducted to verify the effectiveness of the surface treatment. It is measured that the evaporative heat transfer increases about $50\%$ by the porous layer treatment as compared with that from orignal bare surfaces.

Blends of Silicone Rubber and Liquid Crystalline Polymer

  • Shivakumar E.;Das C. K.;Pandey K. N.;Alam S.;N.Mathur G.
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • Blends of silicone rubber (VMQ) and liquid crystalline polymer (LCP) were prepared by the melt mixing technique. Mechanical, XRD, thermal and dynamic mechanical investigations are reported for the pure silicone rubber and blends. The mechanical properties, viz. the tensile strength, tear strength and elongation at break, of the silicone rubber decreased with the addition of LCP. The SEM study on the tensile fractured surface of the blends revealed that they had a two phase structure, and that the failure was mainly due to fiber pull out, which suggests that the VMQ and LCP are incompatible in all of the proportions examined in this study. However, the FTIR study shows that there was a partial interaction between the VMQ and LCP, but which may not be sufficient to grip the fibrils under the applied load. In the XRD analysis, it was observed that the crystalline structure of the silicone rubber deteriorated in the presence of LCP. The DMA study suggested that the storage modulus of the silicone rubber was improved with the addition of LCP, due to the high modulus of the LCP phase. The thermal stability of the silicone rubber was greatly reduced by the addition of LCP, due to the latter having a thermal stability lower than that of silicone rubber.