Blends of Silicone Rubber and Liquid Crystalline Polymer

  • Shivakumar E. (Materials Science Center) ;
  • Das C. K. (Materials Science Center) ;
  • Pandey K. N. (DMSRDE) ;
  • Alam S. (DMSRDE) ;
  • N.Mathur G. (DMSRDE)
  • Published : 2005.04.01

Abstract

Blends of silicone rubber (VMQ) and liquid crystalline polymer (LCP) were prepared by the melt mixing technique. Mechanical, XRD, thermal and dynamic mechanical investigations are reported for the pure silicone rubber and blends. The mechanical properties, viz. the tensile strength, tear strength and elongation at break, of the silicone rubber decreased with the addition of LCP. The SEM study on the tensile fractured surface of the blends revealed that they had a two phase structure, and that the failure was mainly due to fiber pull out, which suggests that the VMQ and LCP are incompatible in all of the proportions examined in this study. However, the FTIR study shows that there was a partial interaction between the VMQ and LCP, but which may not be sufficient to grip the fibrils under the applied load. In the XRD analysis, it was observed that the crystalline structure of the silicone rubber deteriorated in the presence of LCP. The DMA study suggested that the storage modulus of the silicone rubber was improved with the addition of LCP, due to the high modulus of the LCP phase. The thermal stability of the silicone rubber was greatly reduced by the addition of LCP, due to the latter having a thermal stability lower than that of silicone rubber.

Keywords

References

  1. G.W. Calundann and M. Jaffe, Proc. R. A. Welch Conf. Chem. Res., Houston, 246 (1982)
  2. Y. Ide and Z. Ophir, Polym. Eng. Sci., 23, 261 (1983) https://doi.org/10.1002/pen.760230505
  3. A. I. Isayev and M. Modic, Polymer Composites, 8, 158 (1987) https://doi.org/10.1002/pc.750080305
  4. K. G. Blizard and D. G. Baird, SPEANTEC, 32, 311 (1986)
  5. W. Huh, R. Weiss, and L. Nicolais, SPE ANTECH, 32, 306 (1986)
  6. A. I. Isayev and S. Swaminathan, Advanced Composites III, Expanding Ttechnology, ASM, 259 (1989); U.S. Patent 4, 835,047 (1989)
  7. G. Kiss, Polym. Eng. Sci., 27, 410 (1987) https://doi.org/10.1002/pen.760270606
  8. C. U. Ko and G. L. Wilkes, J. Appl. Polym. Sci., 37, 3063 (1989) https://doi.org/10.1002/app.1989.070371101
  9. A. M. Sukhadia, D. Done, and D. G. Baird, Polym. Eng. Sci., 30, 519 (1990) https://doi.org/10.1002/pen.760300904
  10. G. Crevecoeur and G. Groeninckx, Polym. Eng. Sci., 30, 532 (1990) https://doi.org/10.1002/pen.760300906
  11. W. Brostow, Kunstoffe German Plastics, 78, 15 (1988)
  12. A. I. Isayev and T. Limtasiri, The International Encyclopedia of Composites, S. M. Lee, ed., VCH Publishers, New York, 1990, Vol. 3, pp 55
  13. D. Dutta, H. fruitwala, A. Kohli, and R. A. Weiss, Polym. Eng. Sci., 30, 1005 (1990) https://doi.org/10.1002/pen.760301704
  14. A. Siegman, A. Dagan, and S. Kenig, Polymer, 26, 1325 (1985) https://doi.org/10.1016/0032-3861(85)90307-6
  15. K. G. Blizard and D. G. Baird, Polym. Eng. Sci., 27, 653 (1987) https://doi.org/10.1002/pen.760270909
  16. S. H. Jung and S. C. Kim, Polym. J., 20, 73 (1988) https://doi.org/10.1295/polymj.20.73
  17. S. Raychowdhury and C. K. Das, Polymers & Polymer Composites, 8, 177 (2000)
  18. N. G. Sahoo and C. K. Das, Polym. -Plast. Technol. Eng., 41, 619 (2002) https://doi.org/10.1081/PPT-120006437
  19. L. J. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley & Sons, 2nd Ed., New York, 1958
  20. P. J. Collings and M. Hird, Introduction to Liquid Crystals, Taylor and Francis, London, 1997
  21. H. J. Sang and S. K. Bong, Polym. Eng. Sci., 35, 6 (1995)
  22. T. Murayama, Dynamic Mechanical Analysis of Polymeric Materials, Elsevier, New York, 1978
  23. L. E. Nielsen and R. F. Landel, Mechanical Properties of Polymers and Composites, 2nd Ed., Marcel Dekker, Inc., New York, 1994