• 제목/요약/키워드: Liquid phase LPG injection engine

검색결과 41건 처리시간 0.027초

LPG 펌프에서 필터 종류에 따른 펌프 토출성능에 대한 연구 (Performance of Blowoff Flow for a LPG Fuel Pump with Various Fuel Filters)

  • 이석환;박철웅;김창업
    • 한국가스학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2009
  • 최근 연료경제성 및 강화되는 배출가스 규제를 만족하기 위하여 대체연료의 하나인 LPG에 대한 수요가 증가하고 있다. 현재 LPG 차량에 적용되고 있는 제3세대 LPG 연료공급방식인 LPLi(Liquid Phase LPG Injection) 시스템은 가솔린 차량과 비교하여 배출가스는 적게 배출하면서 동등한 출력을 낼 수 있게 하는 핵심 기술이다. LPG 연료를 고압의 액상 상태로 공급하기 위해서는 LPG 펌프가 필요하다. 연료펌프의 성능을 저하 시킬 수 있는 연료 내 불순물을 제거하기 위하여 연료펌프에는 연료필터가 장착되어 있으며 장착되는 연료필터의 종류에 따라서 연료펌프의 성능도 변하게 된다. 본 연구에서는 임펠라 방식을 채택한 LPG 연료펌프에서 극세사, 이중메쉬, 외장형 필터의 세 가지 필터에서 부하별 토출성능 및 효율을 파악하였으며 온도 변화에 따른 펌프유량 변화를 측정하였다.

  • PDF

액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구 (Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine)

  • 김창업;오승묵;강건용
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

대형 액상 LPG 분사식 SI 엔진에서 화염 가시화를 이용한 희박영역에서의 화염 전파특성 연구 (Flame Propagation Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine by Flame Visualization)

  • 김승규;배충식;이승목;김창업;강건용
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.23-32
    • /
    • 2002
  • Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean bum operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean bum performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using an W intensified high-speed CCD camera. Concepts of flame area speed, In addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics. The results show the correlation between the flame propagation characteristics, which is related to engine performance of lean region, and engine design parameters such as swirl ratio, piston geometry and injection timing. Stronger swirl resulted in foster flame propagation under open valve injection. The flame speed was significantly affected by injection timing under open valve injection conditions; supposedly due to the charge stratification. Piston geometry affected flame propagation through squish effects.

LPG액상분상엔진의 분사특성이 성능에 미치는 영향 (Effect of Injection Characteristics on Performance in a LPLi Engine)

  • 김창기;이진욱;강건용
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.46-52
    • /
    • 2004
  • An LPG engine (KL6i) for heavy duty vehicle has been developed using liquid phase LPG injection (LPLi) system, which has regarded as one of next generation LPG fuel supply systems. For the KL6i engine, lean burn technology was introduced to minimize the thermal loading and NOx emissions due to an increase of the engine power. In this work, injection timing and piston bowl shape were investigated for the stabilization of lean burn characteristics. Experimental results reveals that fuel stratification induced by these parameters is most effective strategy to extend lean combustion limit in the LPLi system.

  • PDF

대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구 (Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine)

  • 오승묵;김창업;이진욱;김창기;강건용;배충식
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.5-16
    • /
    • 2003
  • Fuel distribution, combustion, and flame propagation characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine. Optically accessible single cylinder engine and laser diagnostics system were built for quantifying fuel concentration by acetone PLIF(planar laser induced fluorescence) measurements. In case of Otto cycle engine with large bore size, the engine knock and thermal stress of exhaust manifold are so critical that lean burn operation is needed to reduce the problems. It is generally known that fuel stratification is one of the key technologies to extend the lean misfire limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs2.3. Thus, strong swirl flow could promote desirable axial fuel stratification and, in result, may make flame propagation stable in the early stage of combustion.

  • PDF

액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법 (Icing Characteristics in Liquid-Phase Injection of LPG Fuel)

  • 이선엽;김창업;최교남;강건용
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

저점도 LPG연료 인젝터의 누설특성에 관한 연구 (Leakage Characteristics of LPG injector with Low Viscosity LPG Fuel)

  • 김창업;박철웅;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.8-15
    • /
    • 2005
  • The use of clean gaseous fuels for the purpose of high efficiency and low emission in automotive engines has tendency to increase in order to meet the reinforcing emission regulations and to efficiently utilize limited natural resources. Automotive companies developed and commercialized a LPG liquid injection system, which is mounted on LPLi(Liquid Phase LPG Injection) engines and vehicles based on this research trend. This research examines the biggest problem in LPLi engine, that is, the leakage characteristics of low viscosity LPG fuel according to the injector design variables. This study is also aimed to improve the performance of fuel-leakage in LPLi engine through the addition of a lubrication improver in HFRR(High Frequency Reciprocating Rig) facility. The needle displacement and the spring displacement of an LPLi injector are found to be already optimized. The possibility of a maximum of 70% leakage reduction compared to a conventional case, is verified when 1000ppm of a lubrication improvement material is added and 40% increase of a injector spring constant (K) is applied.

  • PDF

대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구 (Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine)

  • 김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

분사조건에 따른 LPG 인젝터의 분무특성에 관한 연구 (A Study on the spray characteristics according to injection conditions for LPG injector)

  • 류재덕;윤용원;이기형;이창식
    • 한국분무공학회지
    • /
    • 제6권3호
    • /
    • pp.17-22
    • /
    • 2001
  • Recently LPG engine is developed to fulfill such new requirements as improved fuel efficiency in additional to further reduced exhaust emission. This experimental study is conducted to analyze spray characteristics for pintle type injector used in a LPLi (Liquid Phase LPG injection) engine. Since spray parameters including penetration length and spray angle make a role to design injector and engine intake system, spray visualization experiment is performed under atmosphere ambient and charging condition using Mie scattering method. From the experimental result under various LPG formation, the increased propane component decreases penetration length because boiling point of propane is lower than butane. To simulate intake charging condition in MPI engine, spray visualization is performed under high pressure condition. As a result, as ambient pressure is increased from atmosphere to 3.0 bar, penetration length is decreased. However, as ambient pressure is increased from atmosphere to 3.0 bar, spray angle is increased.

  • PDF

LPI 인젝터의 성능 및 내구성 개선에 관한 연구 (A Study on Performance Improvement in Durability and Reliability of LPi Injector)

  • 박철웅;김창업;최교남;백승국;신문성
    • 한국가스학회지
    • /
    • 제16권2호
    • /
    • pp.38-44
    • /
    • 2012
  • 근래 들어 강화되는 배출가스 규제에 대응하기 위한 대책으로 LPG 차량에 적용되고 있는 제3세대 LPG 연료공급방식인 LPi(Liquid phase LPG injection)는 펌프를 이용해서 고압의 액상연료를 공급하는 것이 가장 핵심적인 기술이다. LPi 시스템은 액상연료분사의 전자식 정밀제어를 통해 출력이 상승하고 유해배출가스가 현저하게 저감되는 장점이 있으나, 가장 핵심적인 부품인 연료펌프 및 인젝터의 경우 대부분 수입에 의존하고 있어 시스템 설계에 유연하지 못하다. 본 연구에서는 인젝터의 국산화 개발을 위해 LPi 시스템에 적합한 연료공급방법의 인젝터 디자인 및 최적의 작동조건 확보를 목표로 LPi용 인젝터의 설계 및 시작품을 제작하여 누설 및 유량특성을 살펴보았다.