• 제목/요약/키워드: Liquid phantom

검색결과 20건 처리시간 0.024초

Lock-in 증폭기를 채용한 주파수영역 확산 광단층촬영 시스템 (Frequency-domain Diffuse Optical Tomography System Adopting Lock-in Amplifier)

  • 전영식;백운식
    • 한국광학회지
    • /
    • 제22권3호
    • /
    • pp.134-140
    • /
    • 2011
  • 본 논문에서는 생체 내부를 비침습적으로 영상화하기 위한 방법으로 생체내에서의 빛의 전파가 흡수보다는 산란이 지배적으로 작용하는 근적외선(NIR, near-infrared) 영역의 레이저 광원 및 광 검출기를 이용하여 주파수영역(frequency-domain) 확산 광 단층촬영(DOT, diffuse optical tomography) 시스템을 구현하였으며, 생체조직을 모사한 액체 팬텀에 광학적 특성이 다른 이형성분(anomaly)을 삽입하여 실험적으로 흡수 및 산란 분포에 대한 영상을 복원함으로써 이형성분의 위치와 형태에 대한 정보를 획득하였다.

A Fat-Tissue Mimic Phantom for Therapeutic Ultrasound

  • Kim, Mi Seon;Kim, Ju Young;Jung, Hyun Du;Kim, Jae Young;Choi, Heung Ho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권3호
    • /
    • pp.153-159
    • /
    • 2014
  • As the number of treatments in the therapeutic ultrasound field targeted at fat tissue increase, the performance of the equipment should be evaluated for safety using a fat phantom. In this study, a fat phantom was fabricated using olive oil and a tissue-mimicking material (TMM) phantom. To evaluate the acoustic properties of the TMM phantom according to the changes in the olive oil, the composition ratio of a liquid mixture of olive oil with a surfactant was adjusted from 5-20% in 5% steps. The acoustic properties of the phantom were evaluated using the sound velocity, attenuation coefficient, density, and acoustic impedance. The experimental results showed that the sound velocity decreased with increasing amount of olive oil but the other acoustic properties did not change. In addition, the phantom using an olive-oil mixture with a 15% composition ratio was most similar to the acoustic characteristics of fat tissue with a sound velocity of 1477.35 m/s, an attenuation coefficient of 0.514 dB/MHz-cm, a density of $1.07g/cm^3$, and an acoustic impedance of 1.575 MRayl. These experimental results are expected contribute to the accuracy of the results using a TMM phantom and will be useful for the therapeutic ultrasound field targeted at subcutaneous fat tissue.

전기임피던스 단층촬영법을 이용한 외란위치 계측오차 (Measurement errors of the EIT systems using a phantom and conductive yarns)

  • 박지수;구상모;김충현
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1430-1435
    • /
    • 2016
  • Electrical impedance tomography (EIT) has been applied to measure the location of external disturbance using a phantom and conductive yarns. According to the test results, the addition of carbon nanotube particles into the phantom does not show remarkable improvement in location errors. On the other hand combined fabric, conductive yarns with fabric, and non-woven fabric, were added to evaluate its performance as a fabric sensor. The combined fabric resulted in a decrease of 21.5% in the circumferential location error and a decrease of 50% in the radial location error, compared to those of the yarns. Additionally, it was revealed that the measurement error is almost linearly proportional to the conductivity of the phantom liquid and resistance of the conductive yarns. The combined fabric can be a promising material for fabric sensors in sports utilities and medical devices.

다채널 동시측정을 적용한 호모다인 주파수영역 확산 광 이미징 시스템의 구현 (Implementation of Multi-channel Concurrent Detection Homodyne Frequency-domain Diffuse Optical Imaging System)

  • 전영식;백운식
    • 한국광학회지
    • /
    • 제23권1호
    • /
    • pp.23-31
    • /
    • 2012
  • 본 논문에서는 근적외선(NIR, near-infrared) 영역의 레이저 광원 및 광검출기를 이용한 주파수영역(frequency-domain) 확산 광이미징(DOI, diffuse optical imaging) 시스템을 구현하였다. 검출신호의 진폭 및 위상 추출에는 70MHz의 단일 변조주파수를 사용하는 호모다인(homodyne) 검출기법을 적용하였으며, 4개의 검출기를 이용해 동시측정이 가능하도록 시스템을 최적화하였다. 각 검출기들이 서로 다른 결합계수(coupling coefficient)를 가짐으로써 발생하는 진폭 및 위상의 편차를 보정하였다. 본 논문에서 제작한 DOI 시스템을 이용하여, 생체조직을 모사한 액체팬텀에 이형성분(anomaly)을 삽입하여 흡수 및 산란 분포에 대한 영상을 복원함으로써 이형성분의 위치 및 광학적 특성에 대한 정보를 획득하였으며, 단일 광검출기를 사용하는 순차적인 측정에 의한 결과보다 영상복원 성능이 개선되었음을 보였다. 또한, 동일한 액체팬텀에 대해서, 측정위치를 이동해가며 각 단층 슬라이스에 대한 흡수계수 및 산란계수 분포영상을 복원함으로써 구현된 시스템을 이용해 단층촬영이 가능함을 보였다.

ESTIMATION OF LOCAL LIQUID FILM THICKNESS IN TWO-PHASE ANNULAR FLOW

  • Lee, Bo-An;Yun, Byong-Jo;Kim, Kyung-Youn;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.71-78
    • /
    • 2012
  • In many semi-empirical analyses of flow boiling heat transfer, an annular flow is often assumed as a model flow and the local liquid film thickness is a key parameter in the analysis. This work considers a simple electrical conductance technique to estimate the local liquid film thickness in two-phase annular flows. In this approach, many electrodes are mounted flush with the inner wall of the pipe. Voltage differences between two neighboring electrodes for concentric annular flows with various liquid film thicknesses are obtained before the main experiments and logged in a look-up table. For an actual application in the annual flow, voltage differences of neighboring electrodes are measured and then corresponding local film thicknesses are determined by the interpolation of the look-up table. Even though the proposed technique is quite simple and straightforward, the numerical and static phantom experiments support its usefulness.

Efficient Experimental Design for Measuring Magnetic Susceptibility of Arbitrarily Shaped Materials by MRI

  • Hwang, Seon-ha;Lee, Seung-Kyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제22권3호
    • /
    • pp.141-149
    • /
    • 2018
  • Purpose: The purpose of this study is to develop a simple method to measure magnetic susceptibility of arbitrarily shaped materials through MR imaging and numerical modeling. Materials and Methods: Our 3D printed phantom consists of a lower compartment filled with a gel (gel part) and an upper compartment for placing a susceptibility object (object part). The $B_0$ maps of the gel with and without the object were reconstructed from phase images obtained in a 3T MRI scanner. Then, their difference was compared with a numerically modeled $B_0$ map based on the geometry of the object, obtained by a separate MRI scan of the object possibly immersed in an MR-visible liquid. The susceptibility of the object was determined by a least-squares fit. Results: A total of 18 solid and liquid samples were tested, with measured susceptibility values in the range of -12.6 to 28.28 ppm. To confirm accuracy of the method, independently obtained reference values were compared with measured susceptibility when possible. The comparison revealed that our method can determine susceptibility within approximately 5%, likely limited by the object shape modeling error. Conclusion: The proposed gel-phantom-based susceptibility measurement may be used to effectively measure magnetic susceptibility of MR-compatible samples with an arbitrary shape, and can enable development of various MR engineering parts as well as test biological tissue specimens.

Development of an Advanced Deformable Phantom to Analyze Dose Differences due to Respiratory Motion

  • Shin, Dong-Seok;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Kim, Kyeong-Hyeon;Koo, Hyun-Jae;Cho, Min-Seok;Ha, Jin-Suk;Yoon, Do-Kun;Suh, Tae Suk
    • 한국의학물리학회지:의학물리
    • /
    • 제28권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The difference between three-dimensional (3D) and four-dimensional (4D) dose could be affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate the characteristics. A phantom was designed to simulate diaphragm motion with amplitude in the range 1~7 cm and period up to ${\geq}2s$ of regular breathing. To simulate different tumors sizes, custom molds were created using a 3D printer and filled with liquid silicone. The accuracy of the phantom diaphragm motion was assessed by comparing measured motion with predicted motion. Because the phantom diaphragm motion is not identical to the tumor motion, the correlation between the diaphragm and tumor motions was calculated by a curve fitting method to emulate user-intended tumor motion. Tumors of different sizes were located at same position, and tumor set-up positions were evaluated. The accuracy of phantom diaphragm motion was better than 1 mm. The diaphragm-tumor correlation showed that the tumor motion in the superior-inferior direction increased with increasing diaphragm motion. The tumor motion was larger in the $10cm^3$ tumor than in the $90cm^3$ tumor. The range of difference between the tumor set-up positions was 0 to 0.45 cm. This phantom showed independently adjusting factors such as tumor size and motion to facilitate quantitative analysis of the dosimetric impact of respiratory motion according to these factors.

인체 각 부위의 PET/MRI와 PET/CT의 SUV 변화 (Comparison of SUV for PET/MRI and PET/CT)

  • 김재일;전재환;김인수;이홍재;김진의
    • 핵의학기술
    • /
    • 제17권2호
    • /
    • pp.10-14
    • /
    • 2013
  • Purpose: Due to developed simultaneous PET/MRI, it has become possible to obtain more anatomical image information better than conventional PET/CT. By the way, in the PET/CT, the linear absorption coefficient is measured by X-ray directly. However in case of PET/MRI, the value is not measured from MRI images directly, but is calculated by dividing as 4 segmentation ${\mu}-map$. Therefore, in this paper, we will evaluate the SUV's difference of attenuation correction PET images from PET/MRI and PET/CT. Materials and Methods: Biograph mCT40 (Siemens, Germany), Biograph mMR were used as a PET/CT, PET/MRI scanner. For a phantom study, we used a solid type $^{68}Ge$ source, and a liquid type $^{18}F$ uniformity phantom. By using VIBE-DIXON sequence of PET/MRI, human anatomical structure was divided into air-lung-fat-soft tissue for attenuation correction coefficient. In case of PET/CT, the hounsfield unit of CT was used. By setting the ROI at five places of each PET phantom images that is corrected attenuation, the maximum SUV was measured, evaluated %diff about PET/CT vs. PET/MRI. In clinical study, the 18 patients who underwent simultaneous PET/CT and PET/MRI was selected and set the ROI at background, lung, liver, brain, muscle, fat, bone from the each attenuation correction PET images, and then evaluated, compared by measuring the maximum SUV. Results: For solid $^{68}Ge$ source, SUV from PET/MRI is measured lower 88.55% compared to PET/CT. In case of liquid $^{18}F$ uniform phantom, SUV of PET/MRI as compared to PET/CT is measured low 70.17%. If the clinical study, the background SUV of PET/MRI is same with PET/CT's and the one of lung was higher 2.51%. However, it is measured lower about 32.50, 40.35, 23.92, 13.92, 5.00% at liver, brain, muscle, fat, femoral head. Conclusion: In the case of a CT image, because there is a linear relationship between 511 keV ${\gamma}-ray$ and linear absorption coefficient of X-ray, it is possible to correct directly the attenuation of 511 keV ${\gamma}-ray$ by creating a ${\mu}$map from the CT image. However, in the case of the MRI, because the MRI signal has no relationship at all with linear absorption coefficient of ${\gamma}-ray$, the anatomical structure of the human body is divided into four segmentations to correct the attenuation of ${\gamma}-rays$. Even a number of protons in a bone is too low to make MRI signal and to localize segmentation of ${\mu}-map$. Therefore, to develope a proper sequence for measuring more accurate attenuation coefficient is indeed necessary in the future PET/MRI.

  • PDF

중재 시술용 기능성 기관-기관지 팬텀의 유용성 (Usefulness of a Functional Tracheobronchial Phantom for Interventional Procedure)

  • 김태형;임청환;김정구;김명수;최원찬;임진오;이광종;박인애;김미옥;정은미;신령미;정승기;윤선희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제26권4호
    • /
    • pp.27-32
    • /
    • 2003
  • 중재 시술용 기능성 기관-기관지 팬텀을 제작하고, 스텐트 삽입술을 시행하여 그 유용성을 평가하고자 한다. 중재 시술용 기능성 기관-기관지 팬텀은 실리콘으로 제작하였으며, 기관을 통하여 스텐트 삽입술이 가능하도록 삽입구를 제작하였다. 팬텀은 지점토를 이용하여 인체와 동일한 형태로 기관, 기관지 분지부와 양쪽 상부 기관지를 재현하였고, 사각형의 틀에 지점토를 고정시킨 후 액상의 실리콘을 채워 건조시킨 후 지점토를 제거하여 제작하였다. 인체, 동물, 팬텀에서 기관지스텐트 삽입 후 흉부 촬영 필름의 농도와 기관지 분지부의 각도를 측정하여 비교하였다. 기관지스텐트는 세선의 교차가 다른 2가지(X-type, Y-type) 형태를 삽입하였으며, 스텐트 삽입술 후 기관 상부, 기관 분지부, 좌기관지, 우기관지, 스텐트 삽입부의 필름농도를 측정하였다. 필름농도는 기관 상부의 경우, 인체 0.76(${\pm}0.011$), 동물 0.97(${\pm}0.015$), 팬텀 0.45(${\pm}0.016$)이었고, 기관 분지부의 경우는 인체 0.51(${\pm}0.006$), 동물 0.65(${\pm}0.005$), 팬텀 0.65(${\pm}0.008$)이었고, 우기관지의 경우는 인체 0.14(${\pm}0.008$), 동물 0.59(${\pm}0.014$), 팬텀 0.04(${\pm}0.007$)이었고, 좌기관지의 경우는 인체 0.54(${\pm}0.004$), 동물 0.54(${\pm}0.008$)로 팬텀 0.08(${\pm}0.008$)이었고, 스텐트 삽입부의 경우는 인체 0.54(${\pm}0.004$), 동물 0.59(${\pm}0.011$), 팬텀 0.04(${\pm}0.007$)이었다. 기관 분지부가 이루는 각도는 인체의 좌기관지에서 $42.6({\pm}2.07)^{\circ}$, 우기관지에서 $32.8({\pm}2.77)^{\circ}$이었으며, 동물에서 각각 $43.4({\pm}2.40)^{\circ},\;34.6({\pm}1.94)^{\circ}$, 팬텀에서 각각 $35({\pm}2.00)^{\circ},\;50.2({\pm}1.30)^{\circ}$이었다. 본 연구팀이 제작한 기관-기관지 팬텀은 기관지 스텐트 삽입술의 재현이 가능하여 중재시술의 술기연습용이나 스텐트를 평가하기 위한 체외실험에 사용이 가능할 것으로 사료된다.

  • PDF

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • 한국의학물리학회지:의학물리
    • /
    • 제27권3호
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.