• Title/Summary/Keyword: Liquid membrane

Search Result 624, Processing Time 0.037 seconds

Preferential Sorption and Its Role on Pervaporation of Organic Liquid Mixtures

  • 박현채;김은영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.34-35
    • /
    • 1995
  • The unique feature of pervaporation is the mass transfer from a liquid phase to a vapor phase through a non-porous polymeric membrane. When a liquid mixture is brought into contact with a membrane at one side, it is sorbed into the membrane. Due to a driving force applied across the membrane, the sotbed liquid molecules permeate through the membrane and evaporate at the downstream side of the membrane. In pervaporation the permeated species are usually removed from the downstream side under a relatively low vapor pressure, for example by evacuation with a vacuum pump. As far as this condition is fulfilled, the evaporation step can be considered to be much faster than sorption or diffusion. Hence evaporation does not contribute to permselectivity. Therefore the separation by pervaporation results from the differences in the preferential sorption of the individual components of a mixture into the membrane together with the diffusion rates through the membrane. This postulation implies that both sorption and diffusion phenomena have to be accounted for to understand the physico-chemical nature of the pervaporation separation process.

  • PDF

Liquid Crystal Based Optical Sensor for Imaging Trypsin Activity at Interfaces Between Aqueous Phases and Thermotropic Liquid Crystals

  • Zhang, Minmin;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2973-2977
    • /
    • 2013
  • In this study, we developed a liquid crystal (LC)-based optical sensor for monitoring enzymatic activity through orientational changes in liquid crystals (LCs) coupled to the properties of a poly-${\small{L}}$-lysine (PLL)-based polymeric membrane. We prepared a PLL-based polymeric membrane at the planar interface between the thermotropic liquid crystal and aqueous phases. The PLL-based polymeric membrane was obtained by contacting the PLL solution with water immiscible LCs, 4-cyano-4'-pentyl-biphenyl (5CB) doped with adipoyl chloride. We then investigated the membrane properties by examining the permeability of the membrane to phospholipids, 1,2-didodecanoyl-rac-glycero-3-phosphocholine (DLPC). The permeability of the membrane to transport phospholipids was monitored through the orientational transition of 5CB in contact with the dispersions of DLPC. Since trypsin can enzymatically catalyze the hydrolysis of PLL, we incubated an aqueous trypsin solution with the membrane for 2 h at room temperature to cause an increase in the permeability of the polymeric membrane to DLPC. As a result, a bright to dark optical shift of LCs was observed, which implied that an enzymatic reaction between trypsin and PLL-based membrane occurred. Two control experiments using chymotrypsin and bovine serum albumin (BSA) revealed no sign of improved permeability based on the orientational transition of LCs.

Preparation of PVDF Membrane by Thermally-Induced Phase Separation

  • Heo, Chi-Haeng;Lee, Kyung-Mo;Kim, Jin-Ho;Kim, Sung-Soo
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • PVDF membrane formation via TIPS was performed for PVDF/DBP and PVDF/DMP systems. PVDF/DBP system showed solid-liquid phase separation behavior, while PVDF/DMP system has liquid-liquid phase separation characteristic as well as solid-liquid phase separation characteristic. PVDF contents and cooling conditions had great influence on structure, and the effects of each parameter were examined. Spherulitic structure was obtained due to the dominant PVDF crystallization. Diluent rejected to the outside of spherulite occupied the surface of the PVDF spherulites to result in the microporous spherulite formation and micro-void between spherulites. PVDF/DMP system had competitive solid-liquid and liquid-liquid phase separation depending on the cooling path.

LLE and SLM studies for Pd(II) separation using a thiodiglycolamide-based ligand

  • Kumbhaj, Shweta;Prabhu, Vandana;Patwardhan, Anand V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.463-471
    • /
    • 2018
  • The present paper deals with the liquid-liquid extraction and flat sheet supported liquid membrane studies of Pd(II) separation from nitric acid medium using a novel synthesized ligand, namely, N,N,N',N'-tetraethyl-2,2-thiodiethanthiodiglycolamide (TETEDGA). The effect of various diluents and stripping reagents on the extraction of Pd(II) was studied. The liquid-liquid extraction studies showed complete extraction of Pd(II) in ~ 5 min. The influence of nitric acid and TETEDGA concentration on the distribution of Pd(II) has been investigated. The increase in nitric acid concentration resulted in increase in extraction of Pd(II). Stoichiometry of the extracted species was found to be $Pd(NO_3)_2{\cdot}TETEDGA$ by slope analysis method. Extraction studies with SSCD solution showed negligible uptake of Pt, Cr, Ni, and Fe, thus showing very high selectivity and extractability of TETEDGA for Pd(II). The flat sheet supported liquid membrane studies showed quantitative transport of Pd(II), ~99%, from the feed ($3M\;HNO_3$) to the strippant (0.02 M thiourea diluted in $0.4M\;HNO_3$) using 0.01 M TETEDGA as a carrier diluted in n-dodecane. Extraction time was ~160 min. Parameters such as feed acidity, TETEDGA concentration in membrane phase, membrane porosity etc. were optimized to achieve maximum transport rate. Permeability coefficient value of $2.66{\times}10^{-3}cm/s$ was observed using TETEDGA (0.01 M) as carrier, at 3 M, $HNO_3$ feed acidity across $0.2{\mu}m$ PTFE as membrane. The membrane was found to be stable over five runs of the operation.

Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor

  • Ho, Chii-Dong;Sung, Yun-Jen;Chen, Wei-Ting;Tsai, Feng-Chi
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.35-50
    • /
    • 2017
  • The theoretical membrane gas absorption module treatments in a hollow fiber gas-liquid membrane contactor using Happel's free surface model were obtained under countercurrent-flow operations. The analytical solutions were obtained using the separated variable method with an orthogonal expansion technique extended in power series. The $CO_2$ concentration in the liquid absorbent, total absorption rate and absorption efficiency were calculated theoretically and experimentally with the liquid absorbent flow rate, gas feed flow rate and initial $CO_2$ concentration in the gas feed as parameters. The improvements in device performance under countercurrent-flow operations to increase the absorption efficiency in a carbon dioxide and nitrogen gas feed mixture using a pure water liquid absorbent were achieved and compared with those in the concurrent-flow operation. Both good qualitative and quantitative agreements were achieved between the experimental results and theoretical predictions for countercurrent flow in a hollow fiber gas-liquid membrane contactor with accuracy of $6.62{\times}10^{-2}{\leq}E{\leq}8.98{\times}10^{-2}$.

Separation of Organic Liquid Mixtures using Plasma Membrane (플라즈마 멤브레인을 이용한 유기용매 혼합을 분리)

  • 김성오;박복기;김두석;박진교;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.642-644
    • /
    • 1999
  • We have prepared the plasma-polymerized membrane for pervaporation of organic-liquid mixtures by the plasma polymerization technique. Plasma polymerization techniques were utilized in the development of hydrophilic composite membranes having high hydrogen ion permeability and excellent dimensional stability. To develop an organic liquid permselective Membrane, suppressing membrane swearing as well as enhancing the solubility difference is impotant. the objectives of the present study are to disign a suitable membrane for an organic-mixture system by the control of the plasma-polymer solubility.

  • PDF

Recent Advances on Ionic Liquid based Mixed Matrix Membrane for CO2 Separation (CO2 분리를 위한 이온성 액체 기반 혼합 매트릭스 멤브레인의 최근 발전)

  • Wang, Chaerim;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • The membrane-based CO2 capture is a fast-growing branch in gas separating field. Ionic liquid assisted mixed matrix membrane (MMM), which consists of organic fillers with dispersed ionic liquid, shows high potentiality as a candidate for CO2 separation medium. In MMM, various kinds of ionic liquid and inorganic filler are incorporated into polymer to enhance gas separating performance. Especially, the strong interaction between ionic liquid and organic filler gives huge influence on enhancing the separating performance by increasing affinity, selectivity and adsorption of CO2 into the framework. Also the mechanical properties of metal organic framework are positively tuned by input of ionic liquid to improve CO2 permeability and selectivity. In this review, study of various combinations of ionic liquid and metal organic framework (MOF) in the polymeric membrane for carbon dioxide separation is discussed.

On the New Design of Liquid Dome Chair in Membrane Type LNG Carrier (멤브레인형 LNG선박의 리퀴드 돔 체어 구조개발)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.361-367
    • /
    • 2017
  • A membrane type LNG cargo tank is equipped with a pump tower and a liquid dome for loading and unloading of LNG. However, the membrane running continuously on the tank wall to prevent leakage of LNG is interrupted by the liquid dome, hence care should be taken in the design of liquid dome and its substructures. In case of GTT NO96 membrane type cargo containment system, chair structure is arranged along the periphery of the liquid dome targeting to support the membrane which is exposed to the both hull girder and thermal load. This paper proposes a new and simple chair structure, which outperforms traditional design from productivity point of view maintaining same level of structural safety. Strength assessment on the new design was performed to guarantee the structural safety of the new design, which includes strength, fatigue and crack propagation analysis.

Recovery of Dissolved Volatile Fatty Acids from Liquid Sludge using Anaerobic Membrane-fermenter System (혐기성 분리막을 이용한 액상 슬러지로부터의 용해성 저급 지방산의 회수)

  • Kim, Jong-Oh;Kim, Seog-Ku;Kim, Ree-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2004
  • The performance of a membrane-coupled anaerobic fermenter system for the recovery of volatile fatty acids (VFAs) from liquid organic sludge was experimentally investigated. Permeation flux was stably kept around $0.2(m^3/m^2/day)$ during operational period. The membrane-coupled fermenter showed 2.2 times higher VFAs concentration and higher VFAs forming rate than those of fermenter without membrane. The fermenter with membrane proved to be an effective system for the recovery of soluble organic materials from liquid sludge.

Dynamic Stability of Liquid in a Spherical Tank Covered with Membrane under Vertical Harmonic Excitation

  • Chiba, Masakatsu;Murase, Ryo;Nambu, Yohsuke;Komatsu, Keiji
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.34-39
    • /
    • 2015
  • Experimental studies were conducted on the liquid sloshing characteristics in a spherical tank covered with a flexible membrane. A spherical acrylic tank with 145.2 mm in radius was used as a test tank, and it was half-filled with water. Silicon membranes with 0.2 mm thickness were used as a test membrane with plane or hemispherical types. The test tank was harmonically excited in a vertical direction by an electro-dynamic exciter. In this case, a parametric instability vibration comes up when the excitation frequency is twice the natural frequency. Parametric instability regions of natural modes were measured for three cases, i.e. liquid surface is free, covered with plane membrane and hemi-spherical membrane.