• Title/Summary/Keyword: Liquid limit

Search Result 853, Processing Time 0.021 seconds

A Comparative Study on Liquid Limit Value (시험방법에 따른 액성한계치의 비교 연구)

  • 장정욱;박춘식;하주화
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.375-382
    • /
    • 2003
  • This study, Using Pusan clay, examined a relationship between Dynamic and Static Liquid Tests. The Static Liquid Tests wow carried out based on BS and JIS. The results of the study are summarized as follows. (1) The result of the Dynamic Liquid Limit Test showed that the liquid limit values of air-dried soil were greater than those of oven-dried soil by 4%~15% (2) The liquid limit value of the Static Liquid Limit Test was greater than that of the Dynamic Liquid Limit Test by 2%~9%. The following equations show the relationship between the two values WL,Fall(JIS) = 0.961ㆍWL,Cas. + 4.209 WL,Fall(BS) = 0.969ㆍWL,Cas + 5.024 (3) The liquid limit value of BS was greater than that of JIS by 1%~6%. The following equation shows the relationship between the two values.

  • PDF

A Study on Liquid Limit Results by Dynamic and Static Liquid Limit Tests (동적액성한계시험과 정적액성한계시험 결과의 상관성 연구)

  • Ryu, Je-Soo;Lee, Gye-In;Lee, Jae-Ho;Jeon, Woo-Jeong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.207-210
    • /
    • 2003
  • This study, using Pyongteak & Tangjin soil, examined a relationship between Dynamic and Static Liquid Limit Tests. The Liquid Limit Tests were carried out based on BS and KS. The results of the study are summarized as follows. The liquid limit value of the Static Liquid Limit Test was greater than that of the Dynamic Liquid Limit Test be 4% - 14%. The following equation shows the relationship between the two values.(Coefficient of Correlation = 0.88) $$BS(LL)=0.7519{\times}KS(LL)+19.174$$

  • PDF

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength (흙의 비배수전단강도가 0이 되는 함수비인 흐름한계의 제안)

  • Park, Sung-Sik;Nong, Zhenzhen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.73-84
    • /
    • 2013
  • When a slope failure or a debris flow occurs, a shear strength on failure plane becomes nearly zero and soil begins to flow like a non-cohesive liquid. A consistency of cohesive soils changes as a water content increases. Even a cohesive soil existing at liquid limit state has a small amount of shear strength. In this study, a water content, at which a shear strength of cohesive soils is zero and then cohesive soils will start to flow, was proposed. Three types of clays (kaolinite, bentonite and kaolinite (50%)+bentonite (50%)) were mixed with three different solutions (distilled water, sea water and microbial solution) at liquid limit state and then their water contents were increased step by step. Then, their undrained shear strength was measured using a portable vane shear device called Torvane. The ranges of undrained shear strength at liquid and plastic limits are 3.6-9.2 kPa and 24-45 kPa, respectively. On the other hand, the water content that corresponds to the value of the undrained shear strength changing most rapidly is called flow water content. The flow limit refers to the water content when undrained shear strength of cohesive soils is zero. In order to investigate the relationship between liquid limit and flow limit, the cohesive index was defined as a value of the difference between flow limit and liquid limit. The new plasticity index was defined as the value of difference between flow limit and plastic limit. The new liquidity index was also defined using flow limit. The values of flow limit are 1.5-2 times higher than those of liquid limit. At the same time, the values of new plasticity index are 2-5.5 times higher than those of original plasticity index.

Compressibility of fine-grained sediments based on pore water salinity changes

  • Junbong Jang;Handikajati Kusuma Marjadi
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-120
    • /
    • 2023
  • Coastal and offshore structures such as ports and offshore wind farms will often need to be built on fine-grained sediments. Geotechnical properties associated with sediment compressibility are key parameters for marine construction designs especially on soft grounds, which involve clay-mineral dominated fines that can consolidate and settle significantly in response to engineered and environmental loads. We conduct liquid limit tests and 1D consolidation tests with fine-grained soils (silica silt, mica, kaolin and bentonite) and biogenic soils (diatom). The pore fluids for the liquid limit tests include deionized water and a series of brines with NaCl salt concentrations of 0.001 m, 0.01 m, 0.1 m, 0.6 m and 2.0 m, and the pore fluids for the consolidation tests deionized water, 0.01 m, 0.6 m, 2 m. The salt concentrations help the liquid limits of kaolin and bentonite decrease, but those of diatom slightly increase. The silica silt and mica show minimal changes in liquid limit due to salt concentrations. Accordingly, compression indices of soils follow the trend of the liquid limit as the liquid limit determined the initial void ratio of the consolidation test. Diatoms are more likely to be broken than clastic sediments during to loading, and diatom-rich sediment is therefore generally more compressible than clastic-rich sediment.

Estimation of liquid limit of cohesive soil using video-based vibration measurement

  • Matthew Sands;Evan Hayes;Soonkie Nam;Jinki Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2023
  • In general, the design of structures and its construction processes are fundamentally dependent on their foundation and supporting ground. Thus, it is imperative to understand the behavior of the soil under certain stress and drainage conditions. As it is well known that certain characteristics and behaviors of soils with fines are highly dependent on water content, it is critical to accurately measure and identify the status of the soils in terms of water contents. Liquid limit is one of the important soil index properties to define such characteristics. However, liquid limit measurement can be affected by the proficiency of the operator. On the other hand, dynamic properties of soils are also necessary in many different applications and current testing methods often require special equipment in the laboratory, which is often expensive and sensitive to test conditions. In order to address these concerns and advance the state of the art, this study explores a novel method to determine the liquid limit of cohesive soil by employing video-based vibration analysis. In this research, the modal characteristics of cohesive soil columns are extracted from videos by utilizing phase-based motion estimation. By utilizing the proposed method that analyzes the optical flow in every pixel of the series of frames that effectively represents the motion of corresponding points of the soil specimen, the vibration characteristics of the entire soil specimen could be assessed in a non-contact and non-destructive manner. The experimental investigation results compared with the liquid limit determined by the standard method verify that the proposed method reliably and straightforwardly identifies the liquid limit of clay. It is envisioned that the proposed approach could be applied to measuring liquid limit of soil in practical field, entertaining its simple implementation that only requires a digital camera or even a smartphone without the need for special equipment that may be subject to the proficiency of the operator.

A Comparative Study on Liquid Limit Value by Liquid Limit Tests (시험방법에 따른 액성한계치의 비교 연구)

  • Jang Jeong-Wook;Park Choon-Sik;Ha Joo-Hwa;Chung Youn-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.80-85
    • /
    • 2005
  • This study, Using Pusan clay, examined a relationship between Dynamic and Static Liquid Tests. The Static Liquid Tests were carried out based on BS and JIS. The results of the study are summarized as follows. (1) The result of the Dynamic Liquid Limit Test showed that the liquid limit values of Natural condition soil were greater than those of oven-dried soil by $4\%\~15\%$. (2) The liquid limit value of the Static Liquid Limit Test was greater than that of the Dynamic Liquid Limit Test by $2\%\~9\%$. The following equations show the relationship between tile two values. WL, Fall(JIS)=0.961$\cdot$WL, Cas+4.209, WL, Fall(BS)=0.969$\cdot$WL, Cas+5.024, (3) The liquid limit value of BS was greater than that of JIS by $1\%\~6\%$. The following equation shows the relationship between the two values. WL, Fall(BS)=0.976WL, Fall(JIS)+2.638.

Influence of Initial Water Content, Specific Surface, Air Drying and Freezing-thawing Action on the Liquid Limit of Soils (초기함수비, 비표면적, 풍건 및 동결.융해작용이 흙의 액성한계에 미치는 영향)

  • 류능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.116-124
    • /
    • 1996
  • The purpose of The work described in this paper is to clear up the initial moisture content, specific surface, air drying and freezing-thawing process on liquid limit of clayey soils distributed widely at estuary of three main rivers in the west coast. To this end, a series of tests were conducted on clayey soils samples with natural state and treated state. From the test results, the liquid limit was decreased with decrement of initial moisture content, air drying process, and freezing-thawing cycles and increased with increment of specific surface. The specific surface which influenced on the liquid limit is over $25 m^2$m$^2$/g, and their relationships are well formulated. Air drying process is expected to improve the engineering properties of the soils such the pro-water properties were changed to anti-water proper-ties through lowering of water holding as resulted to incline from A-7-5 to A-5 on the soil classificaction plastic chart. The freezing-thawing process decreased 20% of liquid limit, especially under the first cycle of the behavious, as a result of above mentioned reasons, phase change of soil-water system brought the decrement of specific surface and affected to the liquid limit.

  • PDF

Liquid and Plastic Limits of Cohesive Soil by Static and Dynamic Test Methods and Testers (정적 및 동적시험법과 실험자에 따른 점토의 액·소성한계)

  • Kim, Chan-Kee;Yeo, Jin-Soo;Moon, Young-Seog;Park, Hyung-Yeol;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.5-15
    • /
    • 2017
  • In this study, the liquid and plastic limit tests were conducted on Paju clay with Casagarande method (dynamic) and the fall cone test method (static) to find out the effects of test methods and testers on their values. Six testers, who already have the experience of test, participated. As a results of liquid limit tests, the fall cone test method showed 4% smaller liquid limit compared to the value determined by Casagrande method. As the number of tests increased, the fall cone test method showed less variation between testers and the variation range of level of proficiency was also more stable. In the case of one point method, the liquid limit determined by the fall cone test method varied with smaller range compared to the Casagrande. Consequently, the fall cone test provided more stable liquid limit value than that of Casagrande method. For the results of plastic limit tests, there were no difference between Casagrande method and the fall cone test unlike liquid limit test results. In other words, both methods showed that plastic limit reached the average value as the number of tests increased, and the tendency level of proficiency also showed to get better.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Estimation of Generalized Soil-Water Characteristic Curves Using Liquid Limit State (액성한계상태를 이용한 흙-수분 특성곡선의 평가)

  • Sung, Sang-Gyu;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.146-153
    • /
    • 2004
  • The goals of this study are to investigate the feasibility of the reference state approach in determining the generalized soil-water characteristic curve that is essential for characterization of unsaturated soil behavior. The soil-water characteristic curves are obtained from a number of specimens of fine-grained residual soils compacted with different void ratios. Based on the experimental test results, the feasibility of using the liquid limit state as the reference state for predicting the soil-water characteristic curve are verified. Finally, through the regression analysis of experimental data using the equation of Fredlund and Xing (1994), a reliable method is proposed to predict the generalized soil-water characteristic curve of fine-grained residual soils using the liquid limit state as the reference.

  • PDF