• Title/Summary/Keyword: Liquid level

Search Result 1,472, Processing Time 0.027 seconds

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET (미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구)

  • Suh, Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

Numerical Study on Drop Formation Through a Micro Nozzle (미세노즐을 통한 액적형성에 관한 수치적 연구)

  • Kim Sungil;Son Gihun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.205-213
    • /
    • 2005
  • The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satellite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation.

Decoupling Control of Three-tank Liquid Level Systems Based on Feedforward Compensation (Feedforward 보상에 근거한 3개의 탱크 액체 레벨 시스템의 통제 분리)

  • Shi, Xue-Wen
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.36-41
    • /
    • 2008
  • By considering decoupling between loops as a kind of measurable disturbance, a steady-state decoupling method based on feedforward compensation is proposed for a three-tank liquid level system often encountered in practical process control. In addition, the three-tank liquid level system's dynamic model with structure of two-input and two-output is presented according to its working principle. Finally simulation experiments given in C++Builder language demonstrate the effectiveness of the proposed method.

A Numerical Study on Patterning Process Including a Self-Alignment Technique of a Microdroplet (미세액적의 자기정렬 기법을 포함한 패터닝 공법에 대한 해석적인 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.28-38
    • /
    • 2009
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The liquid-air interface is tracked by a level-set method, which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid-gas interface and the no-slip condition at the fluid-solid interface. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • 한풍규;조원국;조용호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.83-88
    • /
    • 2003
  • An analytical study was carried out to evaluate the regenerative cooling characteristics in the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel. As a supplementary cooling method, a radiative cooling was applied to the nozzle extension. It was found out from this work that the cooling system with the regenerative and radiation cooling only is not adaptable as a cooling method for the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel for the 2nd stage of the space launch vehicle. So, additional cooling method, curtain cooling was introduced and analyzed. Curtain cooling was very effective to reduce the thermal and thermo-structural instability.

  • PDF

Optimal Shape of LCVA considering Constraints on Liquid Level (수위의 구속조건을 고려한 LCVA의 최적형상)

  • Park, Ji-Hun;Kim, Gi-Myun;Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.429-437
    • /
    • 2009
  • This study addresses the optimal shape of a LCVA maximizing its vibration control effect through numerical parametric study. Various LCVAs having the same total mass and tuning frequency are designed with constraints on the dimensions and water level, and one obtaining the highest equivalent damping ratio of the controlled system is chosen as an optimal solution. As a result, it was found that the limit on the variation of the water level in the vertical liquid column plays an important role constraining the shape of the LCVA. As the LCVA width perpendicular to the plane of liquid motion increases, the equivalent damping ratio rises with slowdown so that determination of the proper width is important in design of the LCVA shape.

Experimental Evaluation of Design Parameters for TLCD and LCVA (TLCD와 LCVA의 설계파라미터에 대한 실험적 평가)

  • Lee, Sung-Kyung;Min, Kyung-Won;Park, Ji-Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, damping coefficients and effective masses of tuned liquid-type column dampers were quantitatively evaluated based on experimental results by using system identification technique. First, shaking table tests were performed for two types of tuned liquid-type column dampers. Then, the dynamic characteristics of dampers used in this study were experimentally grasped from harmonic wave excitation testing results of the dampers with various water level. Finally, damping ratios and effective masses of the dampers with varying water level were quantitatively evaluated from minimizing the errors between numerical and experimental results. It was confirmed from system identification results that damping ratio and effective mass are decreased as the water level of dampers is increased.

Effect of Liquid Level and Mass Flow Rate on Subcooling of Vertical Refrigeration Receiver Having a Large Aspect Ratio (액 수위와 유량이 세장비가 큰 냉동용 수직 리시버의 과냉에 미치는 영향)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.385-389
    • /
    • 2017
  • Generally, refrigerant temperature out of the receiver is assumed to be saturated. This may be true for horizontal or vertical receivers having small aspect ratio. However, this assumption needs verification for vertical receiver having large aspect ratio. No study has reported information on this issue. The objective of this study was to determine the effect of liquid level and mass flow rate on liquid subcooling of a long vertical receiver using R-410A. During the test, inlet subcooling was maintained at $5^{\circ}C$ while saturation temperature was maintained at $10^{\circ}C$. Results showed that subcooling was maintained for the long vertical receiver. Subcooling preservation ratio (ratio of exit to inlet subcooling) was increased as mass flow rate or liquid level was increased. As a whole, 50 to 70% subcooling preservation was possible for the present receiver. Further investigations are needed to enhance information on this issue using receivers having different aspect ratios.

Evaluation of cementation of intermediate level liquid waste produced from fission 99Mo production process and disposal feasibility of cement waste form

  • Shon, Jong-Sik;Lee, Hyun-Kyu;Kim, Tack-Jin;Kim, Gi-Yong;Jeon, Hongrae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3235-3241
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) is planning the construction of the KIJANG Research Reactor (KJRR) for stable supply of 99Mo. The Fission 99Mo Production Process (FMPP) of KJRR produces solid waste such as spent uranium cake and alumina cake, and liquid waste in the form of intermediate level liquid waste (ILLW) and low level liquid waste (LLLW). This study thus established the operating range and optimum operating conditions for the cementation of ILLW from FMPP. It also evaluated whether cement waste form samples produced under optimum operational conditions satisfy the waste acceptance criteria (WAC) of a disposal facility in Korea (Korea radioactive waste agency, KORAD). Considering economic feasibility and safety, optimum operational conditions were achieved at a w/c ratio of 0.55, and the corresponding salt content was 5.71 wt%. The cement waste form samples prepared under optimum operational conditions were found to satisfy KORAD's WAC when tested for structural stability and leachability. The results indicate that the proposed cementation conditions for the disposal of ILLW from FMMP can be effectively applied to KJRR's disposal facility.