• Title/Summary/Keyword: Liquid filling ratio

Search Result 29, Processing Time 0.023 seconds

Experimental study on the heat transfer characteristics of separate type thermosyphon (분리형 써모사이폰의 열전달특성에 관한 실험적 연구)

  • 정기창;이기우;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.22-32
    • /
    • 1998
  • Separate type thermosyphon has larger critical heat flux than non-loop type thermosyphon, because the flooding phenomenon of vapor and liquid occurring in non-loop one does not occur. The experimental study has been carried out separate type thermosyphon with single tube. An investigation of heat transfer characteristics in separate type thermosyphon is performed experimentally. Heat transfer coefficients in an evaporator and condenser were measured experimentally. The effects of liquid filling ratio, height difference, cooling temperature and heat flux on the heat transfer coefficients were examined. As a result, the reasonable range of the liquid filling ratio and the dependence of heat transfer on vapor temperature and heat flux are obtained.

  • PDF

Comparison of the Internal Pressure Behavior of Liquid Hydrogen Fuel Tanks Depending on the Liquid Hydrogen Filling Ratio (액체수소 충전 비율에 따른 액체수소 연료탱크의 내부 압력 거동 비교)

  • Dongkuk Choi;Sooyong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.8-16
    • /
    • 2024
  • Because hydrogen has very low density, a different storage method is required to store the same amount of energy as fossil fuel. One way to increase the density of hydrogen is through liquefaction. However, since the liquefied temperature of hydrogen is extremely low at -252 ℃, it is easily vaporized by external heat input. When liquid hydrogen is vaporized, a self-pressurizing phenomenon occurs in which the pressure inside the hydrogen tank increases, so when designing the tank, this rising pressure must be carefully predicted. Therefore, in this paper, the internal pressure of a cryogenic liquid fuel tank was predicted according to the liquid hydrogen filling ratio. A one-dimensional thermodynamic model was applied to predict the pressure rise inside the tank. The thermodynamic model considered heat transfer, vaporization of liquid hydrogen, and fuel discharging. Finally, it was confirmed that there was a significant difference in pressure behavior and maximum rise pressure depending on the filling ratio of liquid hydrogen in the fuel tank.

A Study on the Characteristics of Condensation Heat Transfer of Two-Phase Loop Thermosyphons (루우프형 2상 유동 열사이폰의 응축열전달 특성에 관한 연구)

  • Park, Jong-Un;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.4
    • /
    • pp.894-901
    • /
    • 2014
  • This study concerns the performance of condensation heat transfer in two-phase loop thermosyphons. In the present work, R134a has been used as the working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, heat flux and wind speed of condensation have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The optimum liquid fill charge ratio for the best condensation heat transfer rate was 80%.

An Experimetal Study on the Damping Characteristics of Liquid Sloshing (액체 Sloshing에 의한 진동감쇠기에 관한 실험적 연구)

  • Yang, Bo-Suk;Jun, Soon-Ki;Kim, Won-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.96-104
    • /
    • 1991
  • This study is concerned with the fluid sloshing dampers to suppress the high vibration in the resonance and operating regions. An experimental investigation was conducted to determine the logarithmic decrement, natural frequency, tuning frequency ratio of oscillation of liquids contained in an spherical rigid container. The decay of the vibration amplitude was studied for the range of liquid filling ratio in container. The results of the investigation indicate that the sloshing motion of liquids results in an increase in the available effective damping when the filling ratio is in the region near H/R=1.3-1.6.

  • PDF

A Study on Heat Transfer Performance with the Changes of Working Fluid Filling Ratio for Thermosyphon with Internal Groove (내부 그루브를 가진 열사이폰의 작동유체 봉입량 변화에 따른 열전달 성능에 관한 연구)

  • Ye, S.S.;Han, K.I.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.19-24
    • /
    • 2000
  • This study concerns the performance of the heat transfer of the thermosyphon having 80 internal groove in which boiling and condensation occur. Distilled water has been used as a working fluid. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon has been used as the experimental parameters. The heat flux and heat transfer coefficient at the condenser are estimated from the experimental results. The experimental results have been assessed and compared with the existing theories. As a result of the experimental investigation, the maximum heat flow rate in the thermosyphon is proved to be dependent upon the liquid fill quantity. relatively high rates of heat transfer have been achieved operating in the thermosyphon with the internal groove. Also, a thermosyphon with the internal groove can be used to achieve some inexpensive and compact heat exchangers in low temperature. In addition, overall heat transfer coefficients and the characteristics as an operating temperature are obtained for the practical applications.

  • PDF

three dimensional seismic analysis of liquid storage tanks considering liquid-structure-soil interaction (유체-구조물-지반 상호작용을 고려한 유체저장탱크의 3차원 지진해석)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.99-106
    • /
    • 1999
  • In this study a base-isolated liquid storage tank subjected to seismic ground motion is numerically simulated on frequency , domain considering three-dimensional liquid-structure-soil interaction. A hybrid formulation which combines the versatility of finite elements for tank structure and the efficiency of boundary elements for liquid and soil region is adopted for efficient modeling. The base-isolation system using the effective stiffness and damping ratio is also included in this formulation. in order to demonstrate the accuracy and validity of the developed solution the numerical results were compared with the reference solutions in each interaction problem. The effects of the liquid filling ratio and the stiffness of base-isolation system on the behavior of the liquid storage tanks are analyzed.

  • PDF

Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes

  • Burkacki, Daniel;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.175-189
    • /
    • 2019
  • The aim of the study is to show the results of complex shaking table experimental investigation focused on the response of two models of cylindrical steel tanks under mining tremors and moderate earthquakes, including the aspects of diagnosis of structural damage. Firstly, the impact and the sweep-sine tests have been carried out, so as to determine the dynamic properties of models filled with different levels of liquid. Then, the models have been subjected to seismic and paraseismic excitations. Finally, one fully filled structure has been tested after introducing two different types of damages, so as to verify the method of damage diagnosis. The results of the impact and the sweep-sine tests show that filling the models with liquid leads to substantial reduction in natural frequencies, due to gradually increasing overall mass. Moreover, the results of sweep-sine tests clearly indicate that the increase in the liquid level results in significant increase in the damping structural ratio, which is the effect of damping properties of liquid due to its sloshing. The results of seismic and paraseismic tests indicate that filling the tank with liquid leads initially to considerable reduction in values of acceleration (damping effect of liquid sloshing); however, beyond a certain level of water filling, this regularity is inverted and acceleration values increase (effect of increasing total mass of the structure). Moreover, comparison of the responses under mining tremors and moderate earthquakes indicate that the power amplification factor of the mining tremors may be larger than the seismic power amplification factor. Finally, the results of damage diagnosis of fully filled steel tank model indicate that the forms of the Fourier spectra, together with the frequency and power spectral density values, can be directly related to the specific type of structural damage. They show a decrease in the natural frequencies for the model with unscrewed support bolts (global type of damage), while cutting the welds (local type of damage) has resulted in significant increase in values of the power spectral density for higher vibration modes.

Analysis of Cell Performance with Varied Electrolyte Species and Amounts in a Molten Carbonate Fuel Cell

  • Lee, Ki-Jeong;Kim, Yu-Jeong;Koomson, Samuel;Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study evaluated the performance characteristics of varied electrolyte species and amounts in a molten carbonate fuel cell (MCFC). Coin-type MCFCs were used at the condition of $650^{\circ}C$ and 1 atm. In order to measure the effects of varied electrolyte species and amounts, electrolytes of $(Li+K)_2CO_3$ and $(Li+Na)_2CO_3$ were selected and the amounts of 1.5 g, 2.0 g, 3.0 g, and 4.0 g were used. Insignificant performance differences were observed in the cell using different electrolytes, but the cell performance was sensitive to the amount of the electrolyte used. The pore-filling ratio (PFR), a ratio of pore filling in the components by the liquid carbonate electrolytes, was used to determine the optimum performance range. Consequently, 77% PFR demonstrated the optimum performance for both electrolytes. Thus, the MCFC had a permissible but narrow optimum performance range. The remaining amounts of electrolyte in the cells were determined using the weight reduction ratio (WRR) method after several hours of cell operation. The WRR used the relationship between the initial loaded amount of electrolyte and weight reduction of components in 10 wt% acetic acid. The relationships were linear and identical between the two electrolyte species.

Study for Effects of Sloshing Effect Reduction Device on Vessel Motion

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 2017
  • Since sloshing effects influences ship motions including floater's natural frequencies. The significant factors changing ship motions are inner liquid impact loads and inertia forces and moments with respect to its filling ratio. This means that changing sloshing loads with sloshing effects reduction device (SERD) may control ship motions. In this regard, conceptual model for adjustable SERD was suggested by authors and then implanted into fully coupled program between vessel motion and sloshing. By changing clearances of baffles in the inner tank which were component of SERD, then the roll RAOs from each case were obtained. It is revealed that using well-controlled SERD can maintain natural frequencies of floater even inner tank has different filling ratio.

A Study on the Performance of the Heat Transfer for the Liquid Filling as the Ratio of Working Fluid Volume to Total Volume of the Thermosyphon with Axial Internal Fins (축방향 내부 핀을 가진 열사이폰의 작동유체 체적변화에 대한 열전달 성능에 관한 연구)

  • Lee, Jung-Han;Lee, Ki-Baik;Cho, Dong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • This study concerns the performance of the heat transfer of the thermosyphon having 80 internal fins in which boiling and condensation occur. Water has been used as the working fluid. The Liquid filling as the ratio of working fluid volume to total volume of thermosyphon have been used as the experimental parameters. The heat flux and heat transfer coefficient at the condenser are estimated from the experimental results. The experimental results have been assessed and compared with existing theories. As a result of the experimental investigation we can state that the maximum heat flow rate in the thermosyphon prove to depend upon the liquid fill quantity. The relatively high rates of heat transfer have been achived operating in the thermosyphon with axial internal fins. Also, the thermosyphon with internal micro fins can be used to achieve some inexpensive and compact heat exchangers in low temperature. In addition, it is to obtain the overall heat transfer coefficients and the characteristics as a operating temperature for the practical applications.