• 제목/요약/키워드: Liquid chromatography tandem mass spectrometry

검색결과 400건 처리시간 0.025초

Streptomycin의 약욕에 따른 양식 어류(넙치, 조피볼락, 참돔)의 근육조직내 잔류량의 변화 (Muscle Tissue Distribution Level after Dipping Administration of Streptomycin in Olive Flounder (Paralichthys olivaceus), Rockfish (Sebastes schlegeli), and Red sea bream (Pagrus major))

  • 김석;천명선;정희식;정원철;김동혁;손호영;민원기;이후장
    • 한국식품위생안전성학회지
    • /
    • 제22권1호
    • /
    • pp.23-28
    • /
    • 2007
  • Streptomycin을 물 1ton에 20 g을 녹여 넙치, 조피볼락 그리고 참돔을 3일 동안 약욕을 통해 투여한 다음, 휴약기간 동안 근육조직 내 잔류 분포를 조사하였다. 실험어는 해수 중에서 일정한 크기의 케이지에 일반 상업용 사료를 주어 사육하였고, 실험에 사용하기에 앞서 15일 동안 환경에 적응시켰다. 약제 투여 후, 근육시료는 1, 2, 3, 4, 그리고 5일에 각각의 실험어를 대상으로 채취하였다. Streptomycin의 잔류분석은 LC-MS/MS를 이용하여 분석하였다. Streptomycin의 회수율은, 0.05 mg/kg의 농도에서 87.2-102.3%, 0.1 mg/kg의 농도에서는 80.4-94.1%를 보였다. 투약 후 1일에는, 참돔의 근육 중 streptomycin의 잔류농도가 넙치와 조피볼락의 근육 중 잔류농도에 비하여 높았으나 통계적 유의성은 없었으며, 투약 후 2일에는, 모든 근육 시료에서 streptomycin이 검출되지 않았다. 이상의 결과로부터, streptomycin의 약욕을 통한 투여는 넙치, 조피볼락 그리고 참돔의 근육 중에서 안전휴약기간(5일)보다도 체내 소실이 빨리 일어나는 것으로 추정되는 바, 안전휴약기간을 준수한다면 streptomycin의 어류 근육 조직 내 잔류로부터 안전할 것으로 사료된다.

LC-MS/MS를 이용한 견과류 중 트리코테센계 곰팡이 독소 10종 동시분석법 개발 (Method Development for Determination of Trichothecene Mycotoxins in Nuts by LC-MS/MS)

  • 김단비;박지수;유미영
    • 한국식품위생안전성학회지
    • /
    • 제33권5호
    • /
    • pp.354-360
    • /
    • 2018
  • 견과류 중에 있는 트리코테센계 곰팡이독소 오염도를 조사하기 위하여 LC-MS/MS를 이용한 정확성과 신뢰성을 동시에 확보할 수 있는 분석방법을 개발하였다. 견과류 중 트리코테센계 곰팡이 독소는 QuEChERS 추출 및 EMR-Lipid-dSPE 정제과정을 통하여 분석에 사용되었다. 검량선 작성을 위하여 트리코테센계 곰팡이독소 10종에 대하여 $2.00{\sim}75.00{\mu}g/kg$의 범위로 혼합표준용액을 제조하여 실험하였으며, 상관계수는 모두 0.998 이상으로 높은 직선성을 나타내었다. 분석방법의 검출한계는 $0.41{\sim}3.57{\mu}g/kg$로 나타났으며, 정량한계는 $1.23{\sim}10.82{\mu}g/kg$로 나타났다. 또한 트리코테센계 곰팡이 독소 10종에 대하여 각각 저, 중, 고 3가지 농도로 처리하여 회수율 실험을 수행한 결과 81.84~96.87%로 나타났다. 확립된 분석법으로 견과류 중 땅콩을 대상으로 오염도를 조사한 결과 1종에서 deoxynivalenol이 검출되었다. 이러한 결과를 바탕으로 확립된 시험법은 견과류 중 트리코테센계 곰팡이 독소 분석에 적합함을 확인할 수 있었으며 견과류 중 트리코테센계 곰팡이 독소 검출 가능성을 확인한바 보다 다양한 종류의 견과류에 대한 모니터링 조사가 필요한 것으로 판단된다.

LC-MS/MS를 이용한 농산물중 Neonicotinoid 계 농약분석 (Determination of Neonicotinoid Pesticides in Commercial Agricultural Products by LC-MS/MS)

  • 황래홍;양혜란;이재규;김창규;김민정
    • 한국식품위생안전성학회지
    • /
    • 제35권4호
    • /
    • pp.312-318
    • /
    • 2020
  • LC-MS/MS를 이용하여 네오니코티노이드계 농약을 분석하는 방법을 연구하였다. 농산물 중 네오니코티노이드계 농약은 acetonitrile로 추출한 후 NH2 SPE cartridge을 이용하여 전처리를 수행하였으며, 용출액은 0.1% formic acid를 함유한 메탄올/디클로로메탄 혼합액(5/95, v/v)를 사용하였다. 4종의 네오니코티노이드계 농약(imidacloprid, clothianidin, acetamiprid, thiacloprid)의 최소 검출한계 및 정량한계는 경우 각각 0.0001-0.0005 mg/kg 및 0.001 mg/kg 이었다. 농산물에 각각 0.2 mg/kg 및 0.02 mg/kg 농도의 네오니코티노이드계 농약 4종을 첨가하여 분석 시 회수율은 각각 90.7-100.9%, 94.4-99.8% 범위였다. 본 시험법은 신속하고 정밀한 분석법으로 농약 허용물질목록제도(Positive List System (PLS))제도 적용에 필요한 충분한 검출감도를 나타내어 유통농산물에 대한 네오니코티노이드계 농약 분석에 적합한 것으로 조사되었다.

Effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after oral administration

  • Chen, Yin Bin;Wang, Yu Fang;Hou, Wei;Wang, Ying Ping;Xiao, Sheng Yuan;Fu, Yang Yang;Wang, Jia;Zheng, Si Wen;Zheng, Pei He
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.209-214
    • /
    • 2017
  • Background: Both ginsenoside Re and B-complex vitamins are widely used as nutritional supplements. They are often taken together so as to fully utilize their antifatigue and refreshing effects, respectively. Whether actually a drug-nutrient interaction exists between ginsenoside Re and B-complex vitamins is still unknown. The objective of this study was to simultaneously investigate the effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after their oral administration. The study results will provide valuable theoretical guidance for the combined utilization of ginseng and B-complex vitamins. Methods: Ginsenoside Re with or without B-complex vitamins was orally administered to mice to evaluate its antifatigue effects and to rats to evaluate its bioavailability. The antifatigue activity was evaluated by the weight-loaded swimming test and biochemical parameters, including hepatic glycogen, plasma urea nitrogen, and blood lactic acid. The concentration of ginsenoside Re in plasma was determined by liquid chromatography-tandem mass spectrometry. Results: No antifatigue effect of ginsenoside Re was noted when ginsenoside Re in combination with B-complex vitamins was orally administered to mice. B-complex vitamins caused to a reduction in the bioavailability of ginsenoside Re with the area under the concentration-time curve from zero to infinity markedly decreasing from $11,830.85{\pm}2,366.47h{\cdot}ng/mL$ to $890.55{\pm}372.94h{\cdot}ng/mL$. Conclusion: The results suggested that there were pharmacokinetic and pharmacodynamic drug-nutrient interactions between ginsenoside Re and B-complex vitamins. B-complex vitamins can significantly weaken the antifatigue effect and decrease the bioavailability of ginsenoside Re when simultaneously administered orally.

Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rd, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng

  • Kim, Jeon-Kyung;Choi, Min Sun;Jeung, Woonhee;Ra, Jehyeon;Yoo, Hye Hyun;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.611-618
    • /
    • 2020
  • Background: It is well recognized that gut microbiota is involved in the biotransformation of ginsenosides by converting the polar ginsenosides to nonpolar bioactive ginsenosides. However, the roles of the gut microbiota on the pharmacokinetics of ginsenosides in humans have not yet been fully elucidated. Methods: Red ginseng (RG) or fermented red ginseng was orally administered to 34 healthy Korean volunteers, and the serum concentrations of the ginsenosides were determined using liquid chromatography-tandem mass spectrometry. In addition, the fecal ginsenoside Rd- and compound K (CK)eforming activities were measured. Then, the correlations between the pharmacokinetic profiles of the ginsenosides and the fecal ginsenoside-metabolizing activities were investigated. Results: For the RG group, the area under the serum concentratione-time curve values of ginsenosides Rd, F2, Rg3, and CK were 8.20 ± 11.95 ng·h/mL, 4.54 ± 3.70 ng·h/mL, 36.40 ± 19.68 ng·h/mL, and 40.30 ± 29.83 ng·h/mL, respectively. For the fermented red ginseng group, the the area under curve from zero to infinity (AUC) values of ginsenosides Rd, F2, Rg3, and CK were 187.90 ± 95.87 ng·h/mL, 30.24 ± 41.87 ng·h/mL, 28.68 ± 14.27 ng·h/mL, and 137.01 ± 96.16 ng·h/mL, respectively. The fecal CK-forming activities of the healthy volunteers were generally proportional to their ginsenoside Rd-eforming activities. The area under the serum concentration-time curve value of CK exhibited an obvious positive correlation (r = 0.566, p < 0.01) with the fecal CK-forming activity. Conclusion: The gut microbiota may play an important role in the bioavailability of the nonpolar RG ginsenosides by affecting the biotransformation of the ginsenosides.

건일로딘 캡슐(에토돌락 200mg)에 대한 에토딘 캡슐의 생물학적동등성 (Bioequivalence of Etodin Capsule to Kuhnillodin Capsule (Etodolac 200 mg))

  • 이명재;장종민;최상준;이진성;탁성권;서지형;류재환;임성빈;이경태
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권6호
    • /
    • pp.421-427
    • /
    • 2008
  • The purpose of the present study was to evaluate the bioequivalence of two etodolac capsules, Kuhnillodin capsule (Kuhnil. Co., Ltd., Seoul, Korea) as reference drug and Etodin capsule (Myungmun Pharm. Co., Ltd., Seoul, Korea) as test drug, according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty-three healthy male Korean volunteers received one capsule at the dose of 200 mg etodolac in a $2{\times}2$ crossover study. There was a one-week washout period between the doses. Plasma concentrations of etodolac were monitored by a high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) for over a period of 24 hr after the administration. $AUC_{0-24\;hr}$ was calculated by the linear trapezoidal rule method. $C_{max}$ and $T_{max}$ were compiled from the plasma concentration-time data. Analysis of variance (ANOVA) was carried out using logarithmically transformed $AUC_{0-24\;hr}$ and $C_{max}$. The 90% confidence intervals of the $AUC_{0-24\;hr}$ ratio and the $C_{max}$ ratio for Etodin/Kuhnillodin were $\log\;0.97{\sim}\log\;1.08$ and $\log\;0.89{\sim}\log\;1.19$, respectively. These values were within the acceptable bioequivalence intervals of $\log\;0.80{\sim}\log\;1.25$. Thus, our study demonstrated that Etodin was bioeqiovalent to Kuhnillodin preparation when the rate and extent of absorption between two preparations were compared.

Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry

  • Dong, Wei-Wei;Zhao, Jinhua;Zhong, Fei-Liang;Zhu, Wen-Jing;Jiang, Jun;Wu, Songquan;Yang, Deok-Chun;Li, Donghao;Quan, Lin-Hu
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.540-547
    • /
    • 2017
  • Background: In general, after Panax ginseng is administered orally, intestinal microbes play a crucial role in its degradation and metabolization process. Studies on the metabolism of P. ginseng by microflora are important for obtaining a better understanding of their biological effects. Methods: In vitro biotransformation of P. ginseng extract by rat intestinal microflora was investigated at $37^{\circ}C$ for 24 h, and the simultaneous determination of the metabolites and metabolic profile of P. ginseng saponins by rat intestinal microflora was achieved using LC-MS/MS. Results: A total of seven ginsenosides were detected in the P. ginseng extract, including ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. In the transformed P. ginseng samples, considerable amounts of deglycosylated metabolite compound K and Rh1 were detected. In addition, minimal amounts of deglycosylated metabolites (ginsenosides Rg2, F1, F2, Rg3, and protopanaxatriol-type ginsenosides) and untransformed ginsenosides Re, Rg1, and Rd were detected at 24 h. The results indicated that the primary metabolites are compound K and Rh1, and the protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides. Conclusion: This is the first report of the identification and quantification of the metabolism and metabolic profile of P. ginseng extract in rat intestinal microflora using LC-MS/MS. The current study provided new insights for studying the metabolism and active metabolites of P. ginseng.

Chemical transformation and target preparation of saponins in stems and leaves of Panax notoginseng

  • Wang, Ru-Feng;Li, Juan;Hu, Hai-Jun;Li, Jia;Yang, Ying-Bo;Yang, Li;Wang, Zheng-Tao
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.270-276
    • /
    • 2018
  • Background: Notoginsenoside Ft1 is a promising potential candidate for cardiovascular and cancer disease therapy owing to its positive pharmacological activities. However, the yield of Ft1 is ultralow utilizing reported methods. Herein, an acid hydrolyzing strategy was implemented in the acquirement of rare notoginsenoside Ft1. Methods: Chemical profiles were identified by ultraperformance liquid chromatography coupled with quadruple-time-of-flight and electrospray ionization mass spectrometry (UPLC-Q/TOF-ESI-MS). The acid hydrolyzing dynamic changes of chemical compositions and the possible transformation pathways of saponins were monitored by ultrahigh-performance LC coupled with tandem MS (UHPLC-MS/ MS). Results and conclusion: Notoginsenoside Ft1 was epimerized from notoginsenoside ST4, which was generated through cleaving the carbohydrate side chains at C-20 of notoginsenosides Fa and Fc, and vinaginsenoside R7, and further converted to other compounds via hydroxylation at C-25 or hydrolysis of the carbohydrate side chains at C-3 under the acid conditions. High temperature contributed to the hydroxylation reaction at C-25 and 25% acetic acid concentration was conducive to the preparation of notoginsenoside Ft1. C-20 epimers of notoginsenoside Ft1 and ST4 were successfully separated utilizing solvent method of acetic acid solution. The theoretical preparation yield rate of notoginsenoside Ft1 was about 1.8%, which would be beneficial to further study on its bioactivities and clinical application.

국내 가열식품군의 아크릴아마이드 예비 모니터링 (Preliminary Acrylamide Monitoring of Domestic Heat-Treated Food Products)

  • 박재영;김혜영;이종옥;정소영;소유섭;김창민;오상석
    • 한국식품과학회지
    • /
    • 제35권4호
    • /
    • pp.748-751
    • /
    • 2003
  • 2002년 4월 스웨덴의 국립식품청인 SNFA(Swedish National Food Administration)에서 발암의심 물질인 아크릴아마이드가 식품에서 검출되었다고 보고하였다. 그 후 영국, 노르웨이, 스위스, 독일, 미국, 일본, 캐나다 등에서 가열 처리된 식품 중 아크릴아마이드 생성을 확인하였다. 이에 본 연구에서는 미국 FDA에서 추천하는 Liquid chromatography-tandem mass spectrometry(LC-MS/MS) 방법을 이용하여 국내 식품의 아크릴아마이드 검출양을 모니터링하였다. 모니터링 결과, 원료식품인 생감자와, 쌀을 원료로 하여 가열한 밥에서는 아크릴아마이드가 검출되지 않았으며, 도넛은 <30, 36 ppb 검출되었다. 건빵은 854, 1081 ppb 식빵에서는 <30 ppb, 시리얼은 $51{\sim}283\;ppb$ 검출되었다. 감자칩과 감자스낵은 $598{\sim}1709\;ppb$, 비스킷은 $115{\sim}241\;ppb$, 후렌치 후라이는 $341{\sim}1896\;ppb$ 검출되었다. 커피는 $160{\sim}220\;ppb$, 초코릿은 $47{\sim}63\;ppb$ 검출되었다.

LC/MS/MS를 이용한 어린이 소변 중 프탈레이트 대사산물 분석 (Determination of Phthalate Metabolites in Korean Children's Urine by High Performance Liquid Chromatography with Triple Quadrupole Tandem Mass Spectrometry)

  • 고영림;정지연;최경호;김판기
    • 한국환경보건학회지
    • /
    • 제34권4호
    • /
    • pp.271-278
    • /
    • 2008
  • Dialkylated phthalates have been commonly used as plasticizers and a variety of applications. Phthalate diesters have been shown to be developmental and reproductive toxicants. It is very difficult to exactly estimate the dose of dialkylated phthalates taken up by the general population because of environmental contamination. Urinary metabolites of phthalates enabled to estimate internal exposure. The objective of this study was quantitative determination of phthalate metabolites by LC/MS/MS with on-line cleanup method to analyze phthalate metabolites in Korean children's urine. We employed LC/MS/MS with on-line enrichment and column-switching techniques for this biological monitoring. Metabolites determined were 4 primary metabolites; MEHP, MnBP, MiBP, MEP and 2 secondary metabolites of DEHP; 5-OH-MEHP), 5-oxo-MEHP. We analyzed children's urine from 30 boys and 30 girls. The method detection limit of phthalate metabolites were 0.03 ng/mL for MEP, 1.05 ng/mL for MBP, 0.22 ng/mL for MEHP, 0.15 ng/mL for 5-OHMEHP and 0.16 ng/mL for 5-oxo-MEHP, respectively. Switching Column LC/MS/MS was proven to be a useful tool to determine metabolites of phthalate diesters in human urine. The correlation among phthalate metabolites was very high and statistically significant, except MEP. The children's age (months) was negatively correlated to the concentration of phthalate metabolites. The geometric mean concentration of phthalate metabolites (mg/g creatinine) in children's urine were 25.5 for MEP, 130.3 for MnBP, 56.8 for MiBP, 19.5 for MEHP, 85.6 for 5-OH-MEHP and 83.1 for 5-oxo-MEHP, respectively. Levels of estimated daily intake of parent phthalate compounds (${\mu}g$/kg bw/day) were 0.8 for DEP, 5.0 for DnBP, 1.9 for DiBP and $8.9{\sim}14.2$ for DEHP, respectively. Estimated daily intake for DEP and DiBP were lower than those of other studies but the value for DEHP was higher than that of other study.