• Title/Summary/Keyword: Liquid air

Search Result 1,744, Processing Time 0.026 seconds

Measurement of Gas-Accessible PCE Saturation in Unsaturated Soil using Gas Tracers during the Removal of PCE (토양 내 PCE 제거과정에서 가스 분배추적자기법을 이용한 공기노출 PCE의 잔류량 검출)

  • Kim, Heon-Ki;Kwon, Han-Joon;Song, Young-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.42-52
    • /
    • 2011
  • In this laboratory study, the changes in gas-exposed perchloroethene (PCE) saturation in sand during a PCE removal process were measured using gaseous tracers. The flux of fresh air through a glass column packed with PCEcontaminated, partially water-saturated sand drove the removal of PCE from the column. During the removal of PCE, methane, n-pentane, difluoromethane and chloroform were used as the non-reactive, PCE-partitioning, water-partitioning, and PCE and water-partitioning tracers, respectively. N-pentane was used to detect the PCE fraction exposed to the mobile gas. At water saturation of 0.11, only 65% of the PCE was found to be exposed to the mobile gas prior to the removal of PCE, as calculated from the n-pentane retardation factor. More PCE than that detected by n-pentane was depleted from the column due to volatilization through the aqueous phase. However, the ratio of gas-exposed to total PCE decreased on the removal of PCE, implying gas-exposed PCE was preferentially removed by vaporization. These results suggest that the water-insoluble, PCE-partitioning tracer (n-pentane in this study), along with other tracers, can be used to investigate the changes in fluid (including nonaqueous phase liquid) saturation and the removal mechanism during the remediation process.

Formulation of Fully Coupled THM Behavior in Unsaturated Soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.75-83
    • /
    • 2011
  • Emerging issues related with fully coupled Thermo-Hydro-Mechanical (THM) behavior of unsaturated soil demand the development of a numerical tool in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from three mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. With Galerkin formulation and time integration of these governing equations, finite element code is developed to find nonlinear solution of four main variables (displacement-u, gas pressure-$P_g$), liquid pressure-$P_1$), and temperature-T) using Newton's iterative scheme. Three cases of numerical simulations are conducted and discussed: one-dimensional drainage experiments (u-$P_g-P_1$), thermal consolidation (u-$P_1$-T), and effect of pile on surrounding soil due to surface temperature variation (u-$P_1$-T).

A Study on the Visualization of Ice-formation Phenomena of Bath Water to Decide Maintenance Period of Gas Heater (가스히터 보수주기 결정을 위한 히터내부 열전달 매체액 결빙현상 가시화에 관한 연구)

  • Lee J. H.;Ha J. M.;Sung W. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out for the purpose of determination of maintenance period and investigation of weak point due to freeze when the gas heater of KOGAS valve station Is not operated in winter season. 3-dimensional non-linear numerical simulation was conducted in order to predict the time and location which bath water in heater reaches to ice point. FLUENT V 5.0, commercial code, is used for thermal fluid flow analysis. We thought this was problem of heat conduction solving the energy equation and modeled gas heater by using the real geometry and scale for performing the 3-dimensional simulation. It was analyzed complex heat transfer phenomena considering convection due to air on surface, conduction in insulation material, natural convection of liquid in heater and heat loss through the pipe.

  • PDF

Heat transfer and flow characteristics of a circular jet impinging on a convex curved surface (볼록한 반구면에 충돌하는 원형제트의 열전달 및 유동특성)

  • Lee, Dae-Hui;Jeong, Yeong-Seok;Im, Gyeong-Bin;Kim, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.579-588
    • /
    • 1997
  • The heat transfer and flow measurements from a convex curved surface to a circular impinging jet have been made. The flow at the nozzle exit has a fully developed velocity profile. The jet Reynolds number (Re) ranges from 11,000 to 50,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the dimensionless surface curvature (d/D) from 0.034 to 0.089. The results show that the stagnation point Nusselt number (N $u_{st}$ ) increases with increasing value of d/D. The maximum Nusselt number at the stagnation point occurs at L/d .ident. 6 to 8 for all Re's and d/D's tested. For larger L/d, N $u_{st}$ dependency on Re is stronger due to an increase of turbulence in the approaching jet as a result of the more active exchange of momentum with a surrounding air. The local Nusselt number decreases monotonically from its maximum value at the stagnation point. However, for L/d=2 and Re=23,000, and for L/d.leq.4 and Re=50,000, the stream wise Nusselt number distributions exhibit secondary maxima at r/d .ident. 2.2. The formation of the secondary maxima is attributed to an increase in the turbulence level resulting from the transition from a laminar to a turbulent boundary layer.ndary layer.

Surfactant-Induced Suppression of the Thermocapillary Flow in Evaporating Water Droplets (증발하는 물방울의 계면활성제에 의한 열모세관 유동 억제)

  • Yun, Sungchan;Kim, Tae Kwon;Lim, Hee Chang;Kang, Kwan Hyoung;Lim, Geunbae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.695-701
    • /
    • 2013
  • The suppression of a thermocapillary flow (Marangoni flow) by a nonionic surfactant is experimentally investigated for evaporating pure water droplets on hydrophobic substrates. The experiment shows that as the initial concentration of the surfactant increases, the velocity and lifetime of the flow monotonically decrease. The result confirms the no-slip boundary condition at a liquid-air interface, which is explained on the basis of the previous model regarding the effect of surfactants on the no-slip condition. Interestingly, at an initial concentration much less than a critical value, it is found that depinning of the contact line occurs during the early stage of evaporation, which is ascribed to a reduction in the contact angle hysteresis owing to the presence of the Marangoni flow.

Bioconversion of Soybean Curd Residues into Functional Ingredients with Probiotics

  • Oh, Soo-Myung;Kim, Chan-Shick;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.138-143
    • /
    • 2004
  • Soybean curd residues (SCR) obtained from hot and cold manufacturing processes were fermented by indigenous microorganisms, Lactobacillus rhamnosus LS and Bacillus firmus NA-l for 15 h at 37$^{\circ}C$. The pH, acidity, viable cell counts, and tyrosine content were evaluated in samples with variations in sugar, starter and type of SCR. The raw Doowon SCR (D-SCR, cold-processed) fermented by indigenous microorganism had a 0.9% acidity and 6.7 ${\times}$ 10$^{7}$ CFU/g viable cell counts, compared with the 0.11 % acidity and 6.7 ${\times}$ 10$^{6}$ CFU/g viable cell counts of raw fermented Pulmuwon SCR (P-SCR, hot-processed). After fermentation of raw P-SCR with 1 % glucose and 1 % L. rhamnosus LS starter, the viable cell counts, tyrosine content and acidity were 4.7 ${\times}$ 10$^{8}$ CFU/g, 16.3 mg% and 0.9%, respectively. In addition, the raw P-SCR fermented with Bacillus firmus NA-l as co-starter had a 0.45% acidity, 2.4 ${\times}$ 10$^{8}$ CFU/g lactic acid bacteria, and 3.3 ${\times}$ 10$^{6}$ CFU/g Bacillus sp. In particular, the tyrosine content was increased 5 fold. The drying of fermented SCR was completed by hot-air drying (5$0^{\circ}C$) within 12 h; the dried P-SCR and D-SCR had 1.8 ${\times}$ 10$^{7}$ CFU/g and 5.3 ${\times}$ 10$^{6}$ CFU/g viable cell counts, respectively. The concentrate of methanol extract from fermented D-SCR inhibited the initial cell growth of E. coli, Staphylococcus aureus and Pseudomonas aeruginosa in liquid culture.

Analysis of Convective Boiling Heat Transfer for Refrigerant Mixtures in Annular Horizontal Flow (혼합냉매의 환상 유동 증발열전달 해석)

  • Sin, Ji-Yeong;Kim, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.720-729
    • /
    • 1996
  • An analysis of convective boiling heat transfer for refrigerant mixtures is performed for an annular flow to investigate the degradation of the heat transfer rate. Annular flow is selected in this study because a great portion of the evaporator in the refrigeration and air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor is included in this analysis, which is considered to be one of driving forces for the mass transfer at the interface. Due to the concentration gradient at the interface the mass transfer is interfered, so is the evaporative heat transfer at the interface. The mass transfer resistance makes the interface temperature slightly higher and, as a result, the heat transfer coefficients decrease compared with those without mass transfer effects. The degradatioin of the heat transfer rate reaches its maximum at a certain composition. The composition difference between vapor core and vapor at the interface has a direct effect on the temperature difference between the vapor core and the interface and the degradation of the heat transfer rate. Correction factor $C_{F}$ for the mixture effects is added to the correlation for pure substances and the flow boiling heat transfer coefficients can be calculated using the modified equation.n.

Two-dimensional unsteady flow analysis with a five region turbulence models for a simple pipeline system (단순한 관망체계에서 5영역 난류 모형을 이용한 2차원 부정류 흐름 해석 연구)

  • Kim, Hyun Jun;Kim, Sangh Hyun;Baek, Da Won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.971-976
    • /
    • 2018
  • An accurate analysis of pipeline transient is important for proper management and operation of a water distribution systems. The computational accuracy and its cost are two distinct components for unsteady flow analysis model, which can be strength and weakness of three-dimensional model and one-dimensional model, respectively. In this study, we used two-dimensional unsteady flow model with Five-Region Turbulence model (FRTM) with the implementation of interaction between liquid and air Since FRTM has an empirical component to be determined, we explored the response feature of two-dimensional flow model. The relationship between friction behaviour and the variation of undetermined parameter was configured through the comparison between numerical simulations and experimental results.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

Effect of Hydrophilic and Hydrophobic Finishes of Fabrics on the Stratum Corneum Water Content and Comfort Properties (직물의 친수 및 소수화 처리가 피부잔류수분량 및 쾌적감에 미치는 영향)

  • Kahng, Soo Ma;Kim, Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.1
    • /
    • pp.151-161
    • /
    • 1993
  • The purpose of this study was to investigate the effect of hydrophilic finish for polyester (PET) fabric and hydrophobic finish for cotton fabric on the water transport and comfort properties. Polyester fabric was treated with 10% sodium hydroxide solution to impart hydrophilicity. Cotton fabric was sprayed with Scotch-gard$^{(R)}$ water and oil repellent finish to impart hydrophobicity. Porosity, air permeability, contact angle, wickability and water vapor transport rate (WVTR) were measured to determine the water transport properties of fabrics. To compare the comfort properties of treated and untreated fabrics, wear test was performed by putting fabric patches on the upper back: stratum corneum water content (SCWC), subjective wettedness and comfort rating were determined. The results were as follows: (1) The contact angle of water on treated polyester fabric was decreased and that of treated cotton fabric was increased. Also, the wickability of treated polyester fabric was increased and the wickability of cotton fabric was decreased. (2) Although each finish did not change porosity, the water vapor transport rate of treated polyester fabric was increased and that of treated cotton fabric was decreased slightly. (3) The results of stratum corneum water content measurements showed good agreement with the results of the contact angle and the wickability, i.e., the better the liquid water transport properties are, the less the stratum corneum water contents were resulted. (4) The realtionship of subjective wettedness or comfort and stratum corneum water content was independent. Therefore, it was concluded that human perception on the subjective wettedness or the comfort is affected by the skin contact of wet fabric rather than by the stratum corneum water content.

  • PDF