• Title/Summary/Keyword: Liquid Rocket Propellant

Search Result 337, Processing Time 0.022 seconds

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector with Acoustic Excitation by Varying Momentum Flux Ratio (운동량 플럭스 비의 변화에 따른 기체 중심 스월 동축형 분사기의 기체 가진 동특성 연구)

  • Lee, Jungho;Park, Gujeong;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.168-174
    • /
    • 2015
  • Combustion instability is critical problem in developing liquid rocket engine. There have been many efforts to solve this problem. In this study, the method was sought through the injector as part of these efforts to suppress combustion instability. If the injector can suppress the disturbance coming from the supply line as a kind of buffer it will serve to reduce combustion instability. Especially we target at gas propellant oscillation in gas-centered swirl coaxial injector. The phenomenon is simulated with acoustic excitation of speaker. The film thickness response at injector exit was measured by using a liquid film electrode. Also the response of spray to the disturbance was observed by high-speed photography. Gas-liquid momentum flux ratio and the frequency of feeding gas oscillation were changed to investigate the effect of these experimental parameters. The trend of response by varying these parameters and the cause of weak points was studied to suggest the better design of injector for suppressing combustion instability.

Review of the Liquid Propulsion Technology (액체 추진기관 기술 동향)

  • Lee, Tae Ho;Lee, Chang-Hoan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.132-139
    • /
    • 2013
  • Liquid-propellant rocket engines are widely used all over the world, thanks to their high performances thrust, in particular high thrust-to-weight ratio. The sucess rate of the launching of the liquid propulsion is similar to the solid one even though it has more complex mechanical system. In general, liquid propulsion is seemed as a mature technology, the requirements of a renewed interest for space exploration has led to the development of a family of new engines, with more design margins, simpler to use and to produce associated with a wide variety of thrust and life requirements.

Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine (액체로켓엔진에 장착되는 스월 분사기의 분무 모델 개발 및 검증)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.37-50
    • /
    • 2007
  • This study investigated the characteristics of spray generated by a liquid coaxial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis considered long and short wave was introduced in liquid sheet breakup. Through the hydrodynamic analysis the initial liquid sheet thickness spray angle and injection velocity were predicted. To evaluate the effect of turbulence model standard $k-{\varepsilon}$ and RNC $k-{\varepsilon}$ model were applied to numerical calculation and it was known that RNC $k-{\varepsilon}$ model was more applicable to predict spray characteristics. On the basis of this evaluation validation of the developed model was performed with swirl injector installed in LPRE and the predicted results of breakup length, spray angle, and SMD agreed well with experiments qualitatively and quantitatively.

Optimum Performance Analysis of KSR-III LRE (KSR-III 로켓엔진 최적성능 분석)

  • Ha, Seong-Up;Moon, Yoon-Wan;Ryu, Chul-Sung;Han, Sang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.80-87
    • /
    • 2004
  • To understand the each performance parameter correlation of flight type liquid-propellant rocket engine for KSR-III(Korea Sounding Rocket-III), the analysis of engine stand-alone combustion test results was carried out. Considering the variation of ablative material combustion chamber caused by erosion, linear regression analysis that ignores oxidizer/fuel ratio effect and two-variable 2nd-order polynomial regression analysis that considers oxidizer/fuel ratio change were performed. It can be described that linear regression analysis is simple and very practical method, and can predict the performance within 1% error inside analyzed region. And two-variable 2nd-order polynomial regression analysis can predict with very high accuracy inside region and shows that KSR-III engine's optimum oxidizer/fuel ratio for thrust(or specific impulse) is 2.22 and that for combustion chamber pressure(or characteristic velocity) is 2.17.

A Study on Design of a Catalytic Ignitor for Liquid Rocket Engine using Hydrogen Peroxide and Kerosene (과산화수소/케로신을 사용하는 액체로켓엔진의 촉매 점화기 설계에 관한 연구)

  • Chae, Byoung-Chan;Lee, Yang-Suk;Jun, Jun-Su;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • An experimental study on design of a catalytic ignitor was performed to use an ignition source for a small bi-propellant liquid rocket engine which use hydrogen peroxide and kerosene as propellants. In the catalytic ignitor, hot gas of hydrogen peroxide which was decomposed by a catalyst induced autoignition of kerosene. Mass flow rate and O/F ratio for the ignitor were calculated by CEA code. A combustion chamber which had a quartz window and thermocouples was manufactured to determine whether the ignition is successful. Ignition performance was investigated according to exit area of fixed rings and mixture ratio. Results showed that reliable ignition performance was achieved at non-choking exit area of fixed ring and O/F ratio of 6~8.

Modeling of burning surface growth and propagation in AP-based composite propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Kim, Ki-Hong;Yoo, Ji-Chang;Do, Young-Dae;Kim, Hyung-Won;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.191-195
    • /
    • 2009
  • In the solid rocket propellant combustion, dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the burning surface, micro scale bubbles form as liquid and gas phases are mixed in the intermediate zone between the propellant and the flame. The experimentally measured thickness of this layer called the foam layer is approximately 1 micron at 1 atmosphere. In this paper, we present a new melting layer model derived from the classical phase change theory. The model results show that the surface of burning grows and propagate uniformly at a velocity of $r=ap^n$.

  • PDF

Design and Review on the Propellant Feed System for small LRE (소형액체로켓엔진의 공급시스템 설계 및 고찰)

  • Park, Jong-Hee;Song, Yi-Hwa;Choi, Young-Hwan;Kim, Jung-Hoon;Oh, Eung-Hwan;Park, Kye-Seung;Park, Hee-Ho;Kim, Yoo;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.203-206
    • /
    • 2003
  • The propellant feed system for small LRE of the thrust 250kgf designed and fabricated. Design on the propellant feed system is reflected with analysis of old system. Performance of the propellant feed system was proved by cold test and hot firing test. Consequencely, New feeding system found out more stable than old feeding system.

  • PDF

A Study on the Advanced Technology of Solid Rocket Propulsion (고체 추진기관 선진국 기술 동향에 관한 연구)

  • Kim, Hyung-Won;Park, Chong-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.221-224
    • /
    • 2010
  • Recently, due to the enormous cost for sending a satellite into an orbit, small and more reliable satellites have been more demanded. An introduction of new binders(HTPB, GAP) and new oxidizers made great improvements of the large thrust modulation. In order to make cost reduction, one prefers to the low melting temperature thermoplastic propellant reforming the manufacturing process dramatically. Solid propellant rockets have been had a problem of the injection accuracy into orbit, but PBS(Post Boost Stage) using a liquid mono-propellant improves the injection accuracy. This paper also gives the direction of the advanced nozzle materials and the motor case.

  • PDF

Calculation of Combustion Stability Limits Using Linear Stability Analysis in Liquid Rocket Engines (액체 로켓엔진에서 선형 연소 불안정 해석을 이용한 연소 안정한계 곡선 계산)

  • Sohn, Chae-Hoon;Moon, Yoon-Wan;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.93-101
    • /
    • 2004
  • A method to calculate stability limits is investigated to predict the characteristics of high-frequency combustion instability in liquid-propellant rocket engine. It is based on the theory of linear stability analysis proposed in previous works and useful to predict combustion stability at the beginning stage of engine development. The system of equations governing reactive flow in combustor has the simplified and linearized forms. The overall equation expressing stability limits is adopted. The procedures to evaluate quantitatively each term included in the equation are proposed. The thermo-chemical properties and flow variables required in the evaluation can be obtained from calculation of thermodynamic equilibrium, CFD results, and experimental test data. Based on the existent data, stability limits are calculated with actual rocket engine (KSR-III rocket engine). The present calculations show the reasonable stability limits in a quantitative manner and the stability characteristics of the engine are discussed. The prediction from linear stability analysis could be serve as the first approximation to the true prediction.

Liquid Rocket Engine System of Korean Launch Vehicle (한국형발사체 액체로켓엔진 시스템)

  • Cho, Won-Kook;Park, Soon-Young;Moon, Yoon-Wan;Nam, Chang-Ho;Kim, Chul-Woong;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.56-64
    • /
    • 2010
  • A system design has been conducted of the liquid rocket engine for Korean launch vehicle (KSLV-II, Korea Space Launch Vehicle II). The present turbopump-fed liquid rocket engine of vacuum thrust 76 ton and vacuum specific impulse 297 sec adopts gas generator cycle. The combustion pressure of the regeneratively cooled combustor is 60 bar. The propellant is LOx/kerosene. The engine is started by pyrostarter and the combustor is ignited by TEA (TriEthylAluminium). The engine system performance and the subsystems performance requirements are given through energy balance analysis. The combustion pressure, specific impulse and the engine mass are analyzed to be reasonable comparing with the published data. The startup analysis method which will be used in the future has been validated against the turbopump-gas generator coupled test. The tuning method for performance variation of the engine which is not actively controled has been prepared by mode analysis and performance deviation analysis.