Development and Validation of Spray Model of Coaxial Swirl Injector Installed in Liquid Propellant Rocket Engine

액체로켓엔진에 장착되는 스월 분사기의 분무 모델 개발 및 검증

  • 문윤완 (한국항공우주연구원 엔진팀) ;
  • 설우석 (한국항공우주연구원 엔진팀)
  • Published : 2007.10.30

Abstract

This study investigated the characteristics of spray generated by a liquid coaxial swirl injector used in a combustor of the liquid rocket engine. The linear stability analysis considered long and short wave was introduced in liquid sheet breakup. Through the hydrodynamic analysis the initial liquid sheet thickness spray angle and injection velocity were predicted. To evaluate the effect of turbulence model standard $k-{\varepsilon}$ and RNC $k-{\varepsilon}$ model were applied to numerical calculation and it was known that RNC $k-{\varepsilon}$ model was more applicable to predict spray characteristics. On the basis of this evaluation validation of the developed model was performed with swirl injector installed in LPRE and the predicted results of breakup length, spray angle, and SMD agreed well with experiments qualitatively and quantitatively.

본 연구에서는 액체 추진제 로켓엔진의 연소기에 주로 사용되는 액체 동축 스월형 분사기의 분무특성을 예측할 수 있는 모델을 개발하여 분무 연소장을 계산하기위하여 개발된 KIVA의 환경에 적합하도록 유도하였다. 액막의 분열에는 선형 안정성 이론을 도입하여 장파와 단파의 영역을 모두 고려할 수 있는 모델을 개발하였고 점성이 고려된 수력학적 해석을 통해 초기의 액막 두께와 분무각 및 분사 속도를 예측하였다. 또한 개발된 분무 모델에 대한 난류 모델의 적합성을 평가하여 RNC $k-{\varepsilon}$ 모델이 적합함을 알았다. 이러한 모델의 평가를 바탕으로 액체로켓엔진에 장착되는 분사기에서 생산되는 분무의 특성을 실험 결과와 비교하였고, 분열 길이, 분무각 및 SMD가 정성적, 정량적으로 잘 일치하는 것을 알 수 있었다.

Keywords

References

  1. Bayvel, L., and Orzechowski, Z., LIQUID ATOMIZATION, Taylor & Francis, 1993
  2. Lefebvre, A. H., ATOMIZATION AND SPRAYS, Hemisphere Publishing Co., 1989
  3. Taylor, G. I., "The Mechanics of Swirl Atomizers," Seventh Internaltional Congress of Applied Mechanics, Vol. 2, Pt. 1, 1948, pp.280-285
  4. Taylor, G. I., "The Boundary Layer in the Converging Nozzle of a Swirl Atomizer," Q. J. Mech. Appl. Math., Vol. 3, Pt. 2, 1950, pp.129-139 https://doi.org/10.1093/qjmam/3.2.129
  5. Binnie, A. M., and Harris, D. P., "The Application of Boundary Layer Theory to Swirling Liquid Flow Through a Nozzle," Q. J. Mech. Appl. Math., Vol. 3, Pt. 1, 1950, pp.80-106 https://doi.org/10.1093/qjmam/3.1.80
  6. Hodgekinson, T. G., Porton Technical Report No. 191, 1950
  7. Dombrowski, N., and Hassan, D., "The Flow Characteristics of Swirl Centrifugal Spray Pressure Nozzles with Low Viscosity Liquids," AIChE J., Vol. 15, 1969, p.604 https://doi.org/10.1002/aic.690150424
  8. Johns, A. R., "Design Optimization of a Large Pressure-Jet Atomizer for Power Plant," Proceedings of the 2nd International Conference on Liquid Atomization and Spray Systems, 1982, pp.181-185
  9. Taylor, G. I., Generation of ripples by wind blowing over a viscous fluid, Collected Works of G. I. Taylor, Vol. 3, 1940, pp.244-254
  10. Dombrowski, N, and Johns, W. R., "The aerodynamic instability and disintegration of viscous liquid sheets," Chem. Eng. Sci., Vol. 18, 1963, pp.203-214 https://doi.org/10.1016/0009-2509(63)85005-8
  11. Stapper, B. E., Sowa, W. A., and Samuelson, G. S., "An experimental study of the effects of liquid properties on the breakup of a two-dimensional liquid sheet," ASME Journal of Engineering for Gas Turbines and Power, Vol. 114, 1992, pp.39-45 https://doi.org/10.1115/1.2906305
  12. Squire, H. B., " Investigation of the instability of moving liquid film," Brit. J. Appl. Phys., Vol. 4, 1953, pp.167-169 https://doi.org/10.1088/0508-3443/4/6/302
  13. Li, X., and Tankin, R. S., "On the temporal instability of a two-dimensional viscous liquid sheet," Journal of Fluid Mechanics, Vol. 226, 1991, pp.425-443 https://doi.org/10.1017/S0022112091002458
  14. Hagerty, W. W., and Shea, J. F., "A study of the stability of plane fluid sheets," J. Appl. Mech., Vol. 22, 1995, pp.509-514
  15. Senecal, P.K., Schmidt, D.P., Nouar, I., Rutland, C.J., Reitz, R.D., and Corradini, M.L., "Modeling high-speed viscous liquid sheet atomization," Intl. J. of Multiphase Flow, Vol.25, 1999, pp.1073-1097 https://doi.org/10.1016/S0301-9322(99)00057-9
  16. Xu, M., and Markle, L. E., "CFD-aided development of spray for an outwardly opening direct injection gasoline injector," SAE Paper 980493, 1998
  17. Han, Z., Parrish, S., Farrell, P. V., and Reitz, R. D., "Modeling atomization processes of pressure-swirl hollow-cone fuel sprays," Atom. Sprays, Vol. 7, 1997, pp.663-684 https://doi.org/10.1615/AtomizSpr.v7.i6.70
  18. Ren, W. M., and Nally, J. F., "Computations of hollow-cone sprays from a pressure-swirl injector," SAE Paper 982610, 1998
  19. 문윤완, 설우석, 윤영빈, "액체로켓엔진에서 동축 스월형 분사기의 분무특성에 대한 수치적 고찰," 제26회 한국추진공학회 춘계학술대회 논문집, 2006, pp.156-160
  20. 김동준, 임지혁, 길태옥, 한풍규, 윤영빈, "고압환경에서 스월 인젝터의 분무 및 분열 특성," 한국항공우주학회지, 제34권, 제7호, 2006, pp.97-104
  21. Sterling, A. M., and Sleicher, C. A., "The instability of capillary jets," J. Fluid Mech., Vol. 68, 1975, pp.477-485 https://doi.org/10.1017/S0022112075001772
  22. Levich, V. G., Physicochemical Hydrodynamics, Prentice-Hall, New Jersey, 1962
  23. Reitz, R. D., and Bracco, F. V., "Mechanisms of breakup of round liquid jets," Encyclopedia of Fluid Mechanics, Gulf Pub, Houston, TX, 1986, pp.233-249
  24. Dombrowski, N., and Hooper, P. C., "The effect of ambient density on drop formation in sprays," Chem. Eng. Sci., Vol. 17, 1962, pp.291-305 https://doi.org/10.1016/0009-2509(62)85008-8
  25. Rayleigh, L., "On the instability of jets," Proc. Lond. Math. Soc., Vol. 10, 1897, pp.4-13
  26. Rizk, N. K., and Lefebvre, A. H., "The Influence of Liquid Film Thickness on Airblast Atomization," Journal of Engineering for Power, Vol. 102, No. 3, 1980, pp.706-710 https://doi.org/10.1115/1.3230329
  27. Inamura, T., Tamura, H., and Sakamoto, H., "Characteristics of Liquid Film and Spray Injected from Swirl Coaxial Injector," J. of Propulsion and Power, Vol. 19, No. 4, 2003, pp.632-639 https://doi.org/10.2514/2.6151
  28. Zong, N., and Yang, V., "Cryogenic Fluid Jets and Mixing Layers in Transcritical and Supercritical Environments," Combust. Sci. and Tech., Vol. 178, 2006, pp.193-227 https://doi.org/10.1080/00102200500287613
  29. Dityakin, Yu. F., Klyachko, L. A., Novikov, B. V., and Yagodkin, V. I., Liquid Atomization, Machnostroenie, Moscow, 1997 (in Russian)
  30. Amsden, A. A., O'Rourke, P. J., and Butler, T. D., KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Laboratory, LA-11560-MS, 1989
  31. 문윤완, 설우석, 윤영빈, "액체로켓 엔진 연소기에 장착되는 동축 스월 분사기의 액막 분열 및 분무 특성에 대한 수치적 연구," 제4회 유체공학학술대회 논문집, 2006, pp.873-876
  32. Post, S.L., and Abraham, J., "Modeling the outcome of drop-drop collisions in Diesel sprays," Int. J. Multiphase Flow, Vol. 28, 2002, pp.997-1019 https://doi.org/10.1016/S0301-9322(02)00007-1
  33. 임병직, 정기훈, 윤영빈, "액체로켓용 FOOF와 FOF 인젝터의 분무특성 비교," 한국추진공학회지, 제7권, 제2호, 2003, pp.1-6