• Title/Summary/Keyword: Liquid Precursor

Search Result 183, Processing Time 0.024 seconds

Effect of Maternal Dietary $\omega$3 and $\omega$6 Polyunsaturated Fatty Acids on the Fatty Acid Composition of the Second Generation Rat Brain (어미 쥐의 $\omega$3계 및 $\omega$6계 지방산 식이가 제2세대 쥐의 뇌조직 지방산 성분에 미치는 영향)

  • 김미경
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.661-671
    • /
    • 1993
  • The change in fatty acid composition in brain tissue of the second generation rats(Sprague-Dawley strain) was studied using four different fat diets(Corn oil=CO, Soybean oil=SO, Perilla oil=PO, Fish oil=FO, 10% by Wt). The experimental diets were started from pregnancy in four different groups, each consisting of 9 rats. The seound generation rats were fed the same diet as their mothers. Animals were anesthetized with ether at 0, 3, 9 & 16 weeks of age. Whole brains were dissected out, brain tissues were, then, homogenized and lipids were extracted from brain tissues. The fatty acid compositions were measured after methylation by gas-liquid chromatography at 0, 3, 9 and 16 weeks of age of offspring. The changes in the relative concentrations of polyunsaturated fatty acids(PUFA) or more specifically docosahexaenoic acid(22 : 6, $\omega$3, DHA), the major $\omega$3 fatty acid component in rat brain at different age were similar to changes in the amount of DNA in brain tissue showing the maximum value during the lactation. The changes in saturated fatty acid(SFA) content showed a contrasting patten to those of PUFA, while monounsaturated fatty acid(MUFA) increased steadily throughout the experimental period. At birth, the relative concentrations of $\omega$3 series fatty acids the relative concentrations of PUFA, MUFA and SFA converged to very similar values respectively regardless of the dietary fatty acid compositions. In brain tissue, it is of value to note that while changes in relative concentrations of linoleic acid (18 : 2, $\omega$6, LA) and arachidonic acid(20 : 4, $\omega$6, AA) showed a precursor-product-like relationship, $\alpha$-linolenic acid(18 : 3, $\omega$3, $\alpha$-LnA) and DHA showed a different pattern. Even when the $\omega$3 fatty acid content in very low in maternal diet(CO), the second generation rat brain tissues appeared to secure DHA content, suggesting an essential role of this fatty acid in the brain. The fact that a large amount of $\alpha$-LnA in the maternal diet did not have a significant effect on the second generation rat brain $\alpha$-LnA content, indicated that DHA seemed essential component for the brain development in our experimental condition. In all groups, the relative content of $\alpha$-LnA in the brain tissues remained relatively constant throughout the experimental period at the very low level. The study of the specific concentrations and essential role(s) of DHA in each parts of brain tissue is needed in more details.

  • PDF

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

Characterization of Grain Amino Acid Composition and Proteome Profile of a High-lysine Barley Mutant Line M98 (고-Lysine 보리 돌연변이 계통 M98 종실의 아미노산 조성 및 Proteome Profile 특성)

  • Kim, Dea-Wook;Kim, Hong-Sik;Park, Hyoung-Ho;Hwang, Jong-Jin;Kim, Sun-Lim;Lee, Jae-Eun;Jung, Gun-Ho;Hwang, Tae-Young;Kim, Jung-Tae;Kim, Si-Ju;Rakwal, Randeep;Kwon, Young-Up
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.171-181
    • /
    • 2012
  • Lysine is the first limiting essential amino acid in cereals for humans and monogastric animals, although its content is generally low. A chemically induced high-lysine barley mutant, M98, has an agronomically undesirable shrunken endosperm trait. In order to obtain detailed insight into the atypical traits of M98 grains, we characterized amino acid composition and protein profiles of M98 and its parent cultivar Chalssalbori. Among a total of 16 amino acids, the percentage of each of the 7 amino acids, including lysine, was 1.2~1.8 times higher in M98, comparing to Chalssalbori. The percentage of proline and its precursor, glutamic acid, in M98 was about the half of that of the amino acids in Chalssalbori, but arginine synthesized from glutamic acid was 1.8 times higher in M98, compared that in the parent cultivar. Theses results indicated that the mutation in M98 grains might alter the proportion of amino acids linked to each other in a biosynthetic pathway. A comparison of grain proteome profiles between Chalssalbori and M98 revealed 70 differentially expressed protein spots, where 45 protein spots were up-regulated and 25 protein spots down-regulated in M98 compared to those in Chalssalbori. Of these changed protein spots, 53 were identified using nano-electrospray ionization liquid chromatography mass spectrometry. Most of these identified proteins were involved in various biological processes. In particular, 28 protein spots such as ${\beta}$-amylase, serpins and B3-hordein were identified as proteins associated with the atypical traits of M98. It was thought that a genetic study on the unique protein profile of M98 would be needed to develop an agronomically feasible barley cultivar with high-lysine trait.