Browse > Article
http://dx.doi.org/10.7740/kjcs.2012.57.2.171

Characterization of Grain Amino Acid Composition and Proteome Profile of a High-lysine Barley Mutant Line M98  

Kim, Dea-Wook (National Institute of Crop Science, RDA)
Kim, Hong-Sik (International Technology Cooperation Center, RDA)
Park, Hyoung-Ho (National Institute of Crop Science, RDA)
Hwang, Jong-Jin (National Institute of Crop Science, RDA)
Kim, Sun-Lim (National Institute of Crop Science, RDA)
Lee, Jae-Eun (National Institute of Crop Science, RDA)
Jung, Gun-Ho (National Institute of Crop Science, RDA)
Hwang, Tae-Young (National Institute of Crop Science, RDA)
Kim, Jung-Tae (National Institute of Crop Science, RDA)
Kim, Si-Ju (National Institute of Crop Science, RDA)
Rakwal, Randeep (University of Tsukuba)
Kwon, Young-Up (National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.57, no.2, 2012 , pp. 171-181 More about this Journal
Abstract
Lysine is the first limiting essential amino acid in cereals for humans and monogastric animals, although its content is generally low. A chemically induced high-lysine barley mutant, M98, has an agronomically undesirable shrunken endosperm trait. In order to obtain detailed insight into the atypical traits of M98 grains, we characterized amino acid composition and protein profiles of M98 and its parent cultivar Chalssalbori. Among a total of 16 amino acids, the percentage of each of the 7 amino acids, including lysine, was 1.2~1.8 times higher in M98, comparing to Chalssalbori. The percentage of proline and its precursor, glutamic acid, in M98 was about the half of that of the amino acids in Chalssalbori, but arginine synthesized from glutamic acid was 1.8 times higher in M98, compared that in the parent cultivar. Theses results indicated that the mutation in M98 grains might alter the proportion of amino acids linked to each other in a biosynthetic pathway. A comparison of grain proteome profiles between Chalssalbori and M98 revealed 70 differentially expressed protein spots, where 45 protein spots were up-regulated and 25 protein spots down-regulated in M98 compared to those in Chalssalbori. Of these changed protein spots, 53 were identified using nano-electrospray ionization liquid chromatography mass spectrometry. Most of these identified proteins were involved in various biological processes. In particular, 28 protein spots such as ${\beta}$-amylase, serpins and B3-hordein were identified as proteins associated with the atypical traits of M98. It was thought that a genetic study on the unique protein profile of M98 would be needed to develop an agronomically feasible barley cultivar with high-lysine trait.
Keywords
high-lysine; barley; grain; mutant; amino acid; proteome;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shewry, P. R., A. J. Faulks, B. J. Miflin. 1980. Effect of high-lysine mutations on the protein fractions of barley grain. Biochem. Genet. 18 : 133-151.   DOI
2 Shewry, P. R., S. Parmar, B. Buxton, M. D. Gale, C. J. Liu, J. Hejgaard, and M. Kreis. 1988. Multiple molecular forms of ${\beta}$-amylase in seeds and vegetative tissues of barley. Planta 176 : 127-134.   DOI
3 Shewry, P. R., H. M. Pratt, M. J. Charlton, and B. J. Miflin. 1977. Two-dimensional separation of the prolamins of normal and high lysine barley (Hordeum vulgare L.). J. Exp. Bot. 104 : 597-606.
4 Skylas, D. J., D. Van Dyk, and C. W. Wrigley. 2005. Proteomics of wheat grain. J. Cereal Sci. 41 : 165-179.   DOI   ScienceOn
5 Tallberg, A. 1982. Characterization of high-lysine barley genotypes. Hereditas 96 : 229-245.
6 Westermeier, R., T. Naven, and H. R. Hoker. 2008. Proteomics in practice : a guide to successful experimental design, 2nd ed. Wiley-VCH, Germany. pp. 309-356.
7 Witzel, K., A. Weidner, G. K. Surabhi, R. K. Varshney, G. Kunze, G. H. Buck-Sorlin, A. Borner, and H. P. Mock. 2010. Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell Environ. 33 : 211-222.   DOI
8 Yang, G., P. B. Schwarz, and B. A. Vick. 1993. Purification and characterzation of lipoxygenase isozymes in germinating barley. Cereal. Chem. 70 : 589-595.
9 Zhou, X., J. Li, W. Cheng, H. Liu, M. Li, Y. Zhang, W. Li, S. Han, and Y. Wang. 2010. Gene structure analysis of rice ADP-ribosylation factors(OsARFs) and their mRNA expression in developing rice plants. Plant Mol. Biol. Rep. 28 : 692-703.   DOI
10 Lee, K. O., H. H. Jang, B. G. Jung, Y. H. Chi, J. Y. Lee, Y. O. Choi, J. R. Lee, C. O. Lim, M. J. Cho, and S. Y. Lee. 2000. Rice 1 Cys-peroxiredoxin over-expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBS Lett. 486 : 103-106.   DOI
11 Mertz, E. T., L. S. Bates, and O. E. Nelson. 1964. Mutant gene that changes protein composition and increases lysine content in maize endosperm. Science 145 : 279-280.   DOI
12 Roberts, T. H. and J. Hejgaard. 2008. Serpins in plants and green algae. Funct. Integr. Genomics 8 : 1-27.   DOI
13 Noctor, G. and C. H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 : 249-279.   DOI   ScienceOn
14 Oria, M. P., B. R. Hamaker, and J. D. Axtell. 2000. A highly digestible sorghum cultivar exhibits a unique folded structure of endosperm protein bodies. PNAS. 97 : 5065-5070.   DOI
15 Patron, N. J., B. Greber, B. F. Fahy, D. A. Laurie, M. L. Parker, and K. Denyer. 2004. The lys5 Mutations of Barley Reveal the Nature and Importance of Plastidial ADP-Glc Transporters for Starch Synthesis in Cereal Endosperm. Plant Physiol. 135 : 2088-2097.   DOI
16 Rolletschek, H., M. R. Hajirezaei, U. Wobus, and H. Weber. 2002. Antisense-inhibition of ADP-glucose pyrophosphorylase in Vicia narbonensis seeds increases soluble sugars and leads to higher water and nitrogen uptake. Planta 214 : 954-964.   DOI
17 Salcedo, G., R. Sanchez-Monge, A. Argamenteria, and C. Aragoncillo. 1980. The A-hordeins as a group of salt soluble hydropphobic proteins. Plant Sci. Letters. 19 : 109-119.   DOI
18 Shen-Miller, J., M. Kreis, P. R. Shewry, and D. R. Springall. 1991. Spatial distribution of ${\beta}$-amylase in germinating barley seeds based on the avidin-biotin-peroxidase complex method. Protoplasma 163 : 162-173.   DOI
19 Johnson, P. E., N. J. Patron, A. R. Bottrill, J. R. Dinges, B. F. Fahy, M. L. Parker, D. N. Waite, and K. Denyer. 2003. A low-starch barley mutant, Riso 16, lacking the cytosolic small subunit of ADP-Glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the Identity of the plastidial small subunit. Plant Physiol. 131 : 684-696.   DOI
20 Kim, H. S., D. W. Kim, S. L. Kim, S. B. Baek, H. H. Park, J. J. Hwang, and S. J. Kim. 2011. Characterization of a new high-lysine mutant in barley (Hordeum vulgare L.). Kor. J. Breed. Sci. 43 : 307-314.
21 Kim, S. L., B. Y. Son, T. W. Jung, H. G. Moon, and J. R. Son. 2006. Characterization on fatty acids and amino acids of quality protein maize lines. Korean J. Crop Sci. 51 : 458-465.   과학기술학회마을
22 Klemsdal, S. S., O. A. Olsen, and K. A. Rorvik. 1987. The barley high lysine genes of mutants 1508 and 527 alter hordein polypeptide composition quantitatively, but not qualitatively. Hereditas 107 : 107-114.
23 Kottapalli, K. R., P. Payton, R. Rakwal, G. K. Agrawal, J. Shibato, M. Burow, and N. Puppala. 2008. Proteomics analysis ofmature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Sci. 175 : 321-329.   DOI
24 Kreis, M. and H. Doll. 1980. Starch and prolamin level in single and double high-lysine barley mutants. Physiol. Plant. 48 : 139-143.   DOI
25 Lange, M., E. Vincze, H. Wieser, J. K. Schjoerring, and P. B. Holm. 2007. Suppression of C-Hordein synthesis in barley by antisense constructs results in a more balanced amino acid composition. J. Agric. Food Chem. 55 : 6074-6081.   DOI
26 Lea, R. and J. Mundy. 1989. The bifunctional ${\alpha}$-amylase/subtilisin inhibitor of barley : nucleotide sequence and patterns of seed-specific expression. Plant Mol. Biol. 12 : 673-682.   DOI
27 Agrawal, G. K., N. S. Jwa, Y. Iwahashi, M. Yonekura, H. Iwahashi, and R. Rakwal. 2006. Rejuvenating rice proteomics: Facts, challenges, and visions. Proteomics 6 : 5549-5576.   DOI
28 Eggum, B. O., G. Brunsgaard, and J. Jensen. 1995. The nutritive value of new high-lysine barley mutants. J. Cereal Sci. 22 : 171-176.   DOI
29 Agrawal, G. K. and R. Rakwal. 2006. Rice proteomics : A cornerstone for cereal food crop proteomes. Mass Spec. Rev. 25 : 1-53.   DOI
30 Catusse, J., J. M. Strub, C. Job, A. V. Dorsselaer, and D. Job. 2008. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. PNAS. 105 : 10262-10267.   DOI
31 Finnie, C., S. Melchior, P. Roepstorff, and B. Svensson. 2002. Proteome analysis of grain filling and seed maturation in barley. Plant Physiol. 129 : 1308-1319.   DOI   ScienceOn
32 Finnie, C., K. S. Bak-Jensen, S. Laugesen, P. Roepstorff, and B. Svensson. 2006. Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci. 170 : 808-821.   DOI
33 Finnie, C., and B. Svensson. 2009. Barley seed proteomics from spots to structures. J. Proteome Res. 72 : 315-324.   DOI
34 Hejgaard, J., and S. Boisen. 1980. High-lysine proteins in Hiproly barley breeding : Identification. nutritional significance and new screening methods. Hereditas 93 : 311-320.
35 Hirota, N., T. Kaneko, H. Kuroda, H. Kaneda, M. Takashio, K. Ito, and K. Takeda. 2005. Characterization of lipoxygenase-1 null mutants in barley. Theor. Appl. Genet. 111 : 1580-1584.   DOI
36 Jensen, J. and H. Doll. 1979. Gene symbols for barley highlysine mutants. Barley Genet. Newsl. 9 : 33-37.
37 Abebe, T., K. V. B. Melmaiee, and R. P. Wise. 2010. Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct. Integr. Genomics 10 : 191-205.   DOI