• Title/Summary/Keyword: Lipozyme RM IM

Search Result 11, Processing Time 0.022 seconds

Fish Oil Variation during Enzymatic Ethanolysis (어유의 효소적 에탄올화 반응 특성)

  • Shin, Sang-Kyu;Yoo, Hong-Suk;Pack, Hyun-Duk;Chun, Byung-Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.311-316
    • /
    • 2006
  • Enzymatic ethanolysis of fish oil with immobilized lipase was investigated for reducing the free fatty acid contents and enhancing the function of fish oil. Ethanolysis reactions were carried out in erlenmeyer flask (25ml) containing a mixture of squid viscera oil and 99.9% ethanol using 1% (based on w/w squid viscera oil) immobilized lipase. The reaction mixtures were incubated at $50^{\circ}C$ and shaken at 100rpm. Ethanol was added into the mixture by stepwise addition method of Shinmada[9]. Measurement of free fatty acid molar amounts was studied by Acid Value. Tendency of oil variation during transesterification was studied by TLC method. Enzymatic ethanolysis composed diglyceride, monoglyceride and fatty acid ethyl ester with reducing free fatty acid contents. Also, selective ethanolysis by Lipozyme TL-IM and Lipozyme RM-IM mostly did not react at the sn-2 position of squid viscera oil. Lipozyme RM-IM was more suitable enzyme to reduce the free fatty acid contents by ethanolysis than Lipozyme TL-IM. Squid viscera oil was transformed into suitable properties (5 in Acid Value) for functional fish oil production.

  • PDF

Synthesis of Diglyceride Containing Caprylic acid by Immobilized Lipase Catalyzed Esterification of Monoglyceride in a Solvent Free System (모노글리세리드와 카프릴산으로부터 고정화 리파제를 사용한 디글리세리드 생산)

  • Lee, Jang-Woon;Kang, Sung-Tae
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.365-370
    • /
    • 2009
  • For the production of diglyceride (DG) containing medium chain fatty acid, which could be utilized as a substrate to structured lipid production, monoglyceride (MG) and caprylic acid were reacted in the presence of lipase. The reaction system was well mixed homogeneously without using any organic solvent. Among the lipases investigated, Lipozyme RM IM and Novozym 435 were selected on the basis of equilibrium DG yields from the medium chain fatty acid and MG. And reaction conditions such as addition of molecular sieve, water content of immobilized lipase, reaction temperature, and mole ratio of MG/caprylic acid are optimized to increase DG production by using Lipozyme RM IM. DG content of reaction mixture showed 8% increase by adding molecular sieve to reaction mixture. Removal of water from the immobilized lipase could affect seriously equilibrium content of DG. More than 2.8%(w/w) removal of water from the support could make 44% of DG. Optimum temperature was found to $60^{\circ}C$. Temperature shift from $60^{\circ}C$ to $25^{\circ}C$ resulted in increase of free fatty acid (FFA) content. The equilibrium DG yield was not seriously affected by on MG/caprylic acid molar ratio. However, at the stoichiometric ratio of 1:1 the highest DG yield was obtained. Increasing MG/caprylic acid ratio from 0.3 to 1.8 decreased FFA content from 34% to 13%, while MG content increased from 27% to 50%.

Characteristics of Wheat Germ Oil during Enzymatic Ethanolysis in Supercritical Carbon Dioxide (초임계 이산화탄소에서 밀배아유의 효소적 에탄올화 반응 특성)

  • Back, Sung-Sin;Kwon, Kyung-Tae;Jung, Go-Woon;Ahn, Hyaung-Min;Sim, Jeong-Eun;Kang, Hee-Moon;Chun, Byung-Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.546-552
    • /
    • 2009
  • Enzymatic ethanolysis of wheat germ oil with immobilized lipase was investigated for enhancing the function of wheat germ oil. Ethanolysis reactions were carried out in two different systems; non-pressurized and pressurized system. In non-pressurized system, the enzymatic ethanolysis was carried out in an erlenmeyer flask(25 ml) containing a mixture of wheat germ oil and 99.90% ethanol using 1~5 wt% immobilized lipase as Lipozyme TL-IM and Lipozyme RM-IM and the reaction mixtures were incubated at $40{\sim}70^{\circ}C$ with 120 rpm shaking. In pressurized system, the enzymatic ethanolysis was carried out at various condition; immobilized lipase concentration(2 wt%), reaction time(24 h), reaction temperature($40{\sim}60^{\circ}C$) and reaction pressure(75, 100, 150, 200 bars). The samples obtained from each fraction were analyzed by HPLC for analysing contents of monoglyceride, diglyceride, and triglyceride. The conversion of wheat germ oil relied on the reaction temperature and the concentration of immobilized lipase. The optimum condition of enzymatic ethanolysis in non-pressurized and pressurized systems was at $50^{\circ}C$ and 100 bar.

Enzymatic Biodiesel Synthesis from Canola Oil in Liquid Carbon Dioxide (액체 이산화탄소 조건에서의 캐놀라 오일 유래의 효소적 바이오디젤 생산)

  • Lee, Myung-Gu;Park, Chul-Hwan;Cho, Jae-Hoon;Lee, Jun-Hak;Lee, Do-Hoon;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.337-343
    • /
    • 2010
  • It has been well known that organic solvents like t-butanol and n-hexane can protect lipases from the inhibition by short-chain alcohols in the enzymatic transesterification. However, use of the organic solvents should be minimized considering their negative effects on environment and human health. Therefore, use of the greener solvents has been pursued in various are as including the enzymatic biotranformation. In this study, the liquid carbon dioxide ($LCO_2$) was employed as an alternative media for the enzymatic transesterification of canola oil. The conversion in the $LCO_2$ was comparable with those in organic solvents and the supercritical carbon dioxide, and under optimum conditions, the value reached 99.7%. It is expected that this method can provide a new type of biodiesel production process with higher energy efficiency and lower environmental impact.

Development and Characterization of Trans Free Margarine Stock from Lipase-Catalyzed Interesterification of Avocado and Palm Oils (팜유와 아보카도유로부터 효소적 interesterification을 통한 trans free margarine stock 제조 및 이화학적 특성 연구)

  • Lee, Yun-Jeung;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.231-237
    • /
    • 2009
  • Trans free margarine stock (TFMS) was produced by lipase-catalyzed synthesis of fully hydrogenated soybean oil (FHSBO), avocado oil (AO) and palm oil (PO). A blend of FHSBO, AO, and PO with a 1:5:4 (30:150:120 g, respectively) ratio was interesterified with lipozyme RM IM(from Rhizomucor miehei) in a 1 L-batch type reactor at 65 for 12 hr, and the physicochemical and melting properties of TFMS were compared with commercial margarine. The solid fat content (%) of the TFMS was analyzed at 25, 30, and $35^{\circ}C$, respectively, while its melting point was $37.8^{\circ}C$. The trans fatty acid content of the TFMS was below 0.1%. It also had acid, saponification, and iodine values of 0.4, 173.9, and 58.6, respectively. In HPLC chromatograms of the TFMS, newly synthesized peaks of triacylglycerol molecules were observed by using reverse-phase HPLC with evaporative light-scattering detection. Normal-phase HPLC with UV detection was used to quantify tocopherols in the TFMS, indicating that its ${\alpha}-$, ${\gamma}-$ and ${\delta}$-tocopherol contents were 5.7, 2.1, and 1.7 mg/100 g, respectively.

Synthesis of Diacylglycerol-Enriched Functional Lipid Containing DHA by Lipase-Catalyzed in Solvent-Free System (비 용매계에서 DHA가 함유된 Diacylglycerol의 효소적 반응에 의한 합성연구)

  • Kim, Nam-Sook;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.584-589
    • /
    • 2005
  • Structured triacylglycerol (SL-TAG) was synthesized by enzymatic interesterification with algae oil and soybean oil in solvent-free system. Structured di- and monoacylglycerol (SL-DAG/MAG) were produced by glycerolysis with SL-TAG and glycerol catalyzed by lipase. Reactions were performed by sn-1.3 specific Lipozyme RM IM lipase from Rhizomucor miehei (interesterification, 11%; glycerolysis 5% by weight of total substrates) in solvent-free system using stirred-batch type reactor. SL-DAG/MAG contained TAG (42,3 area%), 1,3-DAG (19.2 area%), 1,2-DAG (22.2 area%), MAG (16.0 area%), and free fatty acid (0.2 area%). Iodine and saponification values of SL-DAG/MAG were 208.8 and 179.6, respectively. SL-DAG/MAG appeared yellowish in color.

Analysis and Enzymatic Production of Structured Lipids Containing DHA Using a Stirred-Batch Type Reactor (회분식 반응기를 이용한 DHA 함유 재구성지질의 효소적 합성 및 이화학적 특성 분석)

  • Kim, Nam-Sook;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.1052-1058
    • /
    • 2005
  • Structured lipid (SL) was synthesized by enzymatic interesterification with algae oil containing docosahexaenoic acid (DHA) and soybean oil in the stirred-batch type reactor. The reaction was performed for 15hr at $65^{\circ}C$ with 300 rpm catalyzed by sn-1,3 specific Lipozyme RM 1M lipase from Rhizomucor miehei ($11\%$ by weight of total substrates) in the absent organic solvent. SL contained $87.1\;area\%$ triacylglycerol (TAG), $12.1\;area\%$ diacylglycerol (DAG), $0.6\;area\%$ monoacylglycerol (MAG), and $0.2\;area\%$ free fatty acid (FFA). Major fatty acid profiles of SL were DHA $(15.7\;mol\%)$, linoleic $(31.1\;mol\%)$, palmitic $(20.2\;mol\%)$, oleic $(13.5\;mol\%)$ and eicosapentaenoic acid $(EPA,\;6.6 mol\%)$. SL contained the newly synthesized several peaks. Iodine and saponification of SL were 206.7 and 183.8. SL color showed darker and redder than soybean oil, and appeared the most yellowish color among SL, soybean, and algae oil.

Enzymatic Synthesis of Low-trans Fats Containing Conjugated Linoleic Acids and Their Physicochemical Characteristics (Conjugated Linoleic Acid(CLA)를 함유한 기능성 저트랜스 유지의 효소적 합성 및 이화학적 특성 연구)

  • Nam, Ha-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.752-760
    • /
    • 2008
  • Scale-up production of low-trans fat containing conjugated linoleic acid (CLA-TFO) was performed through lipase-catalyzed synthesis. Blend of fully hydrogenated soybean oil, olive oil containing conjugated linoleic acid and palm oil with 1:2:7 ratio was interesterified through Lipozyme RM IM in the 1 L-batch type reactor at $65^{\circ}C$ for 12 hrs, and the physicochemical and melting properties of CLA-TFO were compared with conventional (high trans fat) or commercial low-trans fat shortening. The trans fatty acids content in the conventional shortening (48.8 area%) was much higher than that of low-trans shortening (0.4 area%) and CLA-TFO (0.3 area%+CLA; 7.6 area%). Acid, saponification and iodine values of CLA-TFO were 0.4, 173.9 and 59.0, respectively. Their ${\alpha}$-, ${\gamma}$-tocopherol contents showed 4.7, 1.0 mg/100 g. Differences were observed in the solid fat contents (SFC), melting point of the conventional or low-trans fat and CLA-TFO. Each SFC of conventional, low-trans fat and CLA-TFO was 32.0, 29.3 and 30.4% with melting point of 38.5, 43.0 and $39.5^{\circ}C$ at $35^{\circ}C$, respectively. In texture profile analysis, hardness of conventional, low-trans fat and CLA-TFO was 111.7, 75.2 and 63.8 g.

Synthesis of Structured Lipids from Corn Oil and Conjugated Linoleic Acid in the Continuous Type Reactor (연속식 반응기를 이용한 Conjugated Linoleic Acid 함유 재구성지질의 합성 연구)

  • 박래균;이기택
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1200-1205
    • /
    • 2003
  • Structured lipids (SL) were synthesized by transesterification of corn oil and conjugated linoleic acid (CLA) in the continuous type reactor using sn-1,3 specific Rhizomucor miehei lipase. The parameters of reaction were observed in terms of flow rate, temperature, and substrate molar ratios. The highest incorporation of CLA was obtained with 1 mL/min flow rate, 55$^{\circ}C$ and 1 : 3 (corn oil/CLA) molar ratio, showing 10.26 ㏖%. When different reaction temperatures and substrate ratios were studied, the highest incorporation was obtained at $65^{\circ}C$ (17.33 ㏖%) and 1 : 5 (corn oil/CLA) ratio (17.50 ㏖%), respectively. After pancreatic lipase analysis, most of all CLA were found at sn-1,3 position. The iodine values of obtained SLs ranged from 110 to 120. From the neutral lipid analysis by normal-phase HPLC, produced SLs composed of 99.35 ∼ 99.89% triacylglycerols, 0.11 ∼ 0.51% 1,2- and 1,3-diacylglycerols, and 0.06 ∼ 0.22% monoacylglycerols.

Synthesis and Characterization of Structured Lipids from Evening Primrose Seeds Oil and Rice Bran Oil (달맞이꽃 종자유와 미강유로부터 효소적 합성한 재구성 지질의 이화학적 특성 분석)

  • Kim, Hyo-Jin;Lee, Kyung-Su;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1156-1164
    • /
    • 2010
  • Structured lipids (SLs) were synthesized by enzymatic interesterification with evening primrose oil (EPO) and rice bran oil (RBO) in a batch-type reactor. The interesterification was performed using a water shaker for 24 hr at $55^{\circ}C$. Mixing speed was set at 200 rpm and Lipozyme RM IM (immobilized lipase from Rhizomucor miehei, 10% by weight of total substrates) was used as a biocatalyst. Rice bran oil and evening primrose oil were interesterified with various molar ratios (RBO : EPO, 1:3, 1:4, and 1:5 mol/mol). Reversed-phase high performance liquid chromatography connected with evaporative light-scattering detector was performed to separate the triacylglycerol (TAG) species of SLs. In the fatty acid analysis, $\gamma$-linolenic acid (7.9 mol%), linoleic acid (67.3 mol%) and oleic acid (13.2 mol%) were the most abundant fatty acids in the SLs. During 24 hr reaction, most of the reaction occurred within 3 hr. TAG compositions, tocopherols and phytosterols were also analyzed. In the TAG species analysis, LLL (ECN=42, L=linoleic acid) dramatically decreased when the reaction time increased.