• 제목/요약/키워드: Lipolytic enzyme

검색결과 66건 처리시간 0.02초

Identification of Novel Esterase from Metagenomic Library of Yangtze River

  • Wu, Chao;Sun, Baolin
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.187-193
    • /
    • 2009
  • A metagenomic library of surface-water microbes from the Yangtze River in China was constructed, and a novel esterase, designated as EstY, was isolated and characterized. EstY had 423 amino acids with an estimated molecular mass of 44 kDa and pI of 7.28. It hydrolyzed various p-nitrophenyl esters(acetate, butyrate, caprate, caprylate, laurate, myristate, and palmitate) and its best substrate was p-nitrophenyl caprate(C8). The optimum pH for EstY activity was 9.0 and the optimum temperature was $50^{\circ}C$. Metal ions, such as $Mn^{2+},\;Co^{2+},\;Hg^{2+},\;Zn^{2+},\;and\;Fe^{3+}$, strongly inhibited the activity of EstY, whereas $Mg^{2+}$ was required for maximal activity. Activity remained in the presence of 10% alcohol, acetone, isopropanol, and dimethyl sulfoxide, respectively. An analysis of the amino acid sequence deduced from estY revealed that it had 7 closely related lipolytic enzymes. Moreover, a sequence analysis showed that EstY, like its 7 relatives, did not belong to any known lipolytic enzyme family.

Degradation Characteristics of A Novel Multi-Enzyme-Possessing Bacillus licheniformis TK3-Y Strain for the Treatment of High-Salinity Fish Wastes and Green Seaweeds

  • Kang, Kyeong Hwan;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • 제18권4호
    • /
    • pp.349-357
    • /
    • 2015
  • To reutilize fisheries waste, we isolated a bacterial strain from a coastal area located in Busan. It was identified as Bacillus licheniformis TK3-Y. Using plate assay and 500-mL flask experiments, we found that the isolate simultaneously possessed cellulolytic, proteolytic, and lipolytic activities with salt tolerance. 10% (v/v) inoculums, were used to examine the biodegradation characteristics of the TK3-Y strain on carboxymethylcellulose, skim milk, and olive oil media. The optimum conditions for pH, temperature, agitation speed, and NaCl concentration on each 1% substrate were 6, $50^{\circ}C$, 180 rpm, and 17.5%, respectively. Under optimal conditions, the TK3-Y strain showed 1.07 U/mL cellulolytic, 1,426 U/mL proteolytic, and 6.45 U/mL lipolytic activities. Each enzyme was stable within a range of 17.5-35% NaCl. Therefore, the salt tolerance ability of strain TK3-Y was superior to other related strains. In degradation of a mixed medium containing all three substrates, both the cellulolytic and proteolytic activities were somewhat lower than those on each single substrate, while the lipolytic activity was somewhat higher. From the above results, the TK3-Y strain appears to be a good candidate for use in the efficient treatment of fisheries waste in which components are not collected separately.

A Novel Esterase from a Marine Metagenomic Library Exhibiting Salt Tolerance Ability

  • Fang, Zeming;Li, Jingjing;Wang, Quan;Fang, Wei;Peng, Hui;Zhang, Xuecheng;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.771-780
    • /
    • 2014
  • A putative lipolytic enzyme gene, named as est9x, was obtained from a marine microbial metagenome of the South China Sea. Sequence analysis showed that Est9X shares lower than 27% sequence identities with the characterized lipolytic enzymes, but possesses a catalytic triad highly conserved in lipolytic enzymes of the ${\alpha}/{\beta}$ hydrolase superfamily. By phylogenetic tree construction, Est9X was grouped into a new lipase/esterase family. To understand Est9X protein in depth, it was recombinantly expressed, purified, and biochemically characterized. Within potential hydrolytic activities, only lipase/esterase activity was detected for Est9X, confirming its identity as a lipolytic enzyme. When using p-nitrophenol esters with varying lengths of fatty acid as substrates, Est9X exhibited the highest activity to the C2 substrate, indicating it is an esterase. The optimal activity of Est9X occurred at a temperature of $65^{\cric}C$, and Est9X was pretty stable below the optimum temperature. Distinguished from other salt-tolerant esterases, Est9X's activity was tolerant to and even promoted by as high as 4 M NaCl. Our results imply that Est9X is a unique esterase and could be a potential candidate for industrial application under extreme conditions.

Expression and Characterization of a New Esterase Cloned Directly from Agrobacterium tumefaciens Genome

  • PARK HYO-JUNG;KIM YOUNG-JUN;KIM HYUNG-KWOUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.145-148
    • /
    • 2006
  • A new functional lipolytic enzyme (AT4) has recently been found from Agrobacterium tumefaciens C58 Cereon using a genome-wide approach. The enzyme has some sequence similarity to E. coli acetyl hydrolase, Emericella nidulans lipase, Moraxella sp. lipase, Acinetobacter lwoffii esterase, and Streptomyces hygroscopicus acetyl hydrolase. However, the sequence similarities are very low (less than $25\%$), suggesting that it is a new lipase/esterase enzyme. ill the present study, intact cell of the A. tumefaciens strain was shown to have lipolytic activity on a tributyrin-LB plate. The AT4 gene was then expressed at a high level in E. coli BL21 (DE3) cells and the enzyme was purified simply by Ni-NTA column chromatography. The purified enzyme showed hydrolytic activity toward p-nitrophenyl caproate, but not toward olive oil, suggesting that the AT4 enzyme was a typical esterase rather than lipase. AT4 esterase had a maximum hydrolytic activity at $45^{\circ}C$ and pH 8.0, when p-nitrophenyl caproate was used as a substrate. It was relatively stable up to $40^{\circ}C$ and at pH 5.0-9.0. Calcium ion and EDT A did not affect the activity and thermal stability of the enzyme. As for substrate specificity, AT4 enzyme could rapidly hydrolyze acetyl and butyl groups from p-nitrophenyl esters and 1-naphthyl esters. In addition, it also released acetyl residues from acetylated glucose and xylose substrates. Therefore, this new esterase enzyme might be used as a biocatalyst in acetylation and deacetylation reactions performed in the fine chemical industry.

고려인삼중 다당체 성분이 암독소 호르몬-L의 지방분해 작용과 안지오텐신 변환효소의 활성에 미치는 영향 (Effect of Acidic Polysaccharide Components of Korean Ginseng on Lipolytic Action of Toxohormone-L and on Activity of Angiotensin Converting Enzyme)

  • 이성동;황우익;흥전척도
    • Journal of Ginseng Research
    • /
    • 제20권3호
    • /
    • pp.248-255
    • /
    • 1996
  • This study was devised to observe in vitro, the inhibitory effects of acidic polysaccharide fractions from Korean red ginseng (KRG) and white ginseng (KWG) on the lipolytic action of loxohormone-L and on angiotensin converting enzyme (ACE, peptidyldipeptidase hydrolase, EC 3.4.15.1) . The crude acidic polysaccharides (CAP) extracted from main and lateral roots of KRG and KWG were separately purified through several procedures. The total inhibitory activities on the lipolytic action of toxohormone-L of CAP from main roots of KRG and KWG was higher than those of CAP from lateral roots of KRG and KWG, respectively, and that of CAP from main root of KRG was 3.1 times higher than that of CAP from main root of KWG. The specific activity of CAP from main root of KRG was measured as 5.40 units/mg, when one unit was defined as the amount giving 50% inhibition on toxohormone-L induced lipolysls. A subfraction named PG4 3 obtained by replanted chromatography on DEAE-TOYOPEARL 650M gave the specific activity of 24.4 units/mg. On the other hand, it was found that the total inhibitory activity on ACE of CAP from lateral root of KRG was the highest among the 4 kinds of CAP, but the specific activity of CAP from lateral root of KWG was the highest.

  • PDF

Chemical Synthesis and Cloning of Panax ginseng Peptide Gene

  • Zhang, Hong-Ying;Chen, Dong-Song;Zhang, Jin
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1990년도 Proceedings of International Symposium on Korean Ginseng, 1990, Seoul, Korea
    • /
    • pp.65-67
    • /
    • 1990
  • The sequence of ginseng peptide gene was designed and synthesized by the solid phase plasmid pUC19. Escherichia coli JM101 cells were transformed with above hybrid plasmids. Ampicillin resistant transformants were screened and identified by in situ colony hybridization and Southern blot techinques. Finally the gene sequencing was done by the Sanger dideoxy method using primer extension.

  • PDF

메주로부터 지질분해 효소 생산 균주의 분리 및 배양학적 특성 (The Isolation and Culture Characterization of a Lipolytic Enzyme Producing Strain from Meju)

  • 윤혜주;이유정;여수환;최혜선;박혜영;박희동;백성열
    • 한국미생물·생명공학회지
    • /
    • 제40권2호
    • /
    • pp.98-103
    • /
    • 2012
  • 경기도 일대에서 수집한 메주 시료에서 지질분해 활성을 나타내는 균주 Y124를 분리하여 동정한 결과 Yarrowia lipolytica와 100% 상동성을 보였다. 분리 균주가 생산하는 lipase의 조효소에 대한 일반적인 특성을 조사한 결과, 탄소원으로 olive oil을 단독으로 사용한 YPO 배지에서 8시간 배양하였을 때 lipase 활성이 가장 높게 나타났다. YPD 배지에서는 lipase 활성이 거의 없었으며, olive oil과 glucose를 모두 포함하는 YPDO 배지에서는 lipase 활성이 YPO 배지 보다 낮았다. 그리고 olive oil 농도에 따른 lipase 활성을 측정한 결과, olive oil 무첨가보다 0.7% 첨가하여 8시간 배양했을 때 lipase 활성이134 U/mL으로 가장 높게 나타나 lipase의 생산이 olive oil의 첨가에 의해 유도되는 것으로 생각된다. 생육온도에 따른 lipase 활성 측정한 결과, $30^{\circ}C$에 배양하였을 때 배양 8시간에 가장 높은 활성이 나타났고, $25^{\circ}C$$37^{\circ}C$에 배양하였을 때는 배양 12시간에 활성이 가장 높게 나타났으며, Y124균주의 lipase 활성 최적 온도는 $30^{\circ}C$로 나타났다. 그리고 lipase의 기질 친화도를 확인한 결과 Y124균주가 생산하는 lipase의 경우 p-nitrophenyl octanoate ($C_8$)에서 가장 높은 활성이 나타났다.

Serratia liquefaciens AL-11이 생산하는 Alkaline Lipase의 특성 및 작용양상 (Characteristics and Action Pattern of Alikaline Lipase from Serratia liquefaciens AL-11)

  • 최청;김태완;안봉전;김영활;손준호;김성;최희진
    • 한국미생물·생명공학회지
    • /
    • 제24권1호
    • /
    • pp.87-91
    • /
    • 1996
  • The optimum temperature and pH for the enzyme activity were 45$^{\circ}C$ and 10.0, respectively. The enzyme was stable in a pH range of 5 to 10, and 62% of its activity was lost on heat treatment of 60$^{\circ}C$ for 20 min. The activity of the purified enzyme was inhibited by $Fe^{2+},\;Zn^{2+}\;and\;Pb^{2+}$, and slightly activated by $Mn^{2+}\;and\;Ca^{2+}$. ${\gamma}$-Chloromercuribenzoic acid, 2,4-dinitrophenol and $H_{2}O_{2}$ did not show inhibitroy effect on the lipolytic activity of the alkaline lipase but ethylenediaminetetraacetic acid inhibited the enzyem activity. This suggested that the enzyme have metal group in its active site. Sodium salts of bile acids stimulated the enzyme activity. Analysis of hydrolyzates of olive oil after the reaction revealed that Serratia liquefaciens AL-11 produced non-specific lipolytic enzyme.

  • PDF

Aeromonas hydrophila PL43이 생산하는 지질분해 효소의 정제 및 특성 (Purification and Characterization of a Lipolytic Enzyme Produced by Aeromonas hydrophila PL43)

  • 김용우;홍성욱;정건섭
    • 한국미생물·생명공학회지
    • /
    • 제44권2호
    • /
    • pp.130-139
    • /
    • 2016
  • 지렁이의 장내로부터 분리한 미생물 중에서 지질을 가수분해하는 활성이 높은 미생물을 선발하였으며, 동정하여 Aeromonas hydrophila PL43으로 명명하였다. A. hydrophila PL43이 생산하는 지질분해 효소의 정제는 황산암모늄 침전, DEAE-sepharose FF 이온교환 크로마토그래피, Sepharose S-300HR 겔 크로마토그래피 단계로 수행하였으며 최종적으로 정제한 지질분해 효소는 p-nitrophenyl butyrate (pNPB)를 기질로 사용했을 때, 84.5배로 정제되었고 효소 활성의 회수율은 3.7%이었다. p-nitrophenyl palmitate (pNPP)를 기질로 사용했을 때에는 56.6배로 정제되었고 효소 활성의 회수율은 2.5%이었다. SDS-PAGE를 수행한 결과, A. hydrophila PL43이 생산하는 지질분해효소의 분자량은 약 74 kDa으로 추정되었다. 지질분해 효소의 pH에 대한 영향은 pNPB와 pNPP 기질에서 pH 8.0에서 최대활성이 보였고 pH 7.0−10.0에서 안정하였다. pNPB를 기질로 사용한 경우에는 50℃에서 pNPP를 기질로 사용한 경우는 60℃에서 최대 활성을 나타냈으며, 정제한 지질분해 효소는 20−60℃에서 안정성을 나타내었다. 정제한 지질분해효소는 금속이온 Co2+, Cu2+, Fe2+에 의해서 효소활성이 억제되었으며, EDTA의 metal chelating에 의해 활성이 회복되었다. Inhibitor에 의한 저해는 효소 활성부위의 serine 잔기와 결합하여 효소 활성을 억제하는 PMSF에서 가장 우수하였으며 효소 활성부위의 aspatyl 잔기에 결합하여 효소활성을 억제하는 pepstatin A는 농도가 높아짐에 따라 효소활성을 저해하였다. 따라서 정제한 지질분해 효소는 활성부위에 serine 잔기와 aspartyl 잔기가 있는 것으로 사료되었다. 정제한 지질분해 효소의 Km 값과 Vmax 값은 pNPB를 기질로 사용 했을 때 Km 값과 Vmax 값은 1.07 mM과 7.27 mM/min이고, 기질이 pNPP일 때 Km 값과 Vmax 값은 1.43 mM 과 2.72 mM/min이었다.