• Title/Summary/Keyword: Lipid protection

Search Result 227, Processing Time 0.023 seconds

Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens

  • Zhu, Yaling;Mao, Huirong;Peng, Gang;Zeng, Qingjie;Wei, Qing;Ruan, Jiming;Huang, Jianzhen
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.143-153
    • /
    • 2021
  • Objective: To explore the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in laying hens, an experiment was conducted to reveal the differences in histopathological observation and gene expression between FLHS group and normal group. Methods: We compared the histopathological difference using hematoxylin and eosin staining and proceeded with RNA sequencing of adipose tissue to search differentially expressed genes and enriched biological processes and pathways. Then we validated the mRNA expression levels by real-time polymerase chain reaction and quantified protein levels in the circulation by enzyme-linked immunosorbent assay. Results: We identified 100 differentially expressed transcripts corresponding to 66 genes (DEGs) were identified between FLHS-affected group and normal group. Seven DEGs were significantly enriched in the immune response process and lipid metabolic process, including phospholipase A2 group V, WAP kunitz and netrin domain containing 2, delta 4-desaturase sphingolipid 2, perilipin 3, interleukin-6 (IL-6), ciliary neurotrophic factor (CNTF), and suppressor of cytokine signaling 3 (SOCS3). And these genes could be the targets of immune response and be involved in metabolic homeostasis during the process of FLHS in laying hens. Based on functional categories of the DEGs, we further proposed a model to explain the etiology and pathogenesis of FLHS. IL-6 and SOCS3 mediate inflammatory responses and the satiety hormone of leptin, induce dysfunction of Jak-STAT signaling pathway, leading to insulin resistance and lipid metabolic disorders. Conversely, CNTF may reduce tissue destruction during inflammatory attacks and confer protection from inflammation-induced insulin resistance in FLHS chickens. Conclusion: These findings highlight the therapeutic implications of targeting the JAK-STAT pathway. Inhibition of IL6 and SOCS3 and facilitation of CNTF could serve as a favorable strategy to enhance insulin action and improve glucose homoeostasis, which are of importance for treating obesity-related disorders for chickens.

High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture

  • Hou, Jingang;Jeon, Byeongmin;Baek, Jongin;Yun, Yeejin;Kim, Daeun;Chang, Boyoon;Kim, Sungyeon;Kim, Sunchang
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • Background: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

Antioxidant Action of Ginseng : An hypothesis (인삼의 항산화 작용)

  • Lee, D.W.;Sohn, H.O.;Lim, H.B.;Lee, Y.G.;Aprikian, A.G.;Aprikian, G.V.
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 1995
  • Antioxidant effect of Korean ginseng (Panax ginseng C.A. Meyer) was investigated in rats. Long-term administration of ginseng water extract protected the activity of liver cytosotic SOD, catalase and glutathione peroxidase from being significantly decreased with advancing age (p<0.05). It was more effective toward glutathione peroxidase than other antioxidant enzymes. However, the level of sulfhydryl compounds and its related enzymes such as glutathione reductase and glutathione-5-transferase was not significantly changed by the administration of ginseng. Liver microsomal formation of reactive oxygen species such as superoxide and hydrogen peroxide did not show a significant difference between two groups although it was slightly decreased with age, but lipid peroxidizability of microsomal membrane induced by a prooxidant was slightly lower in ginseng-treated rats. Interestingly, antioxidant capacity of plasma from ginseng treated rats on autooxidation of ok-brain homogenates was much higher than that of normal ones. However, resistance of RBC membrane against oxidative stress showed a similar tendency. The content of serum TBA reactive substances lowered consistently in the rats treated with r ginseng at all corresponding age and a significant difference between two groups was found at 24 months of age (p<0.05). Ginseng extract protected lipid peroxidation in brain and liver. This protection was more effective in the stressed rats imposed by immobilization than normal ones. In conclusion, ginseng water extract protected the age related deterioration of major antioxidant enzymes, and this effect was more striking with increasing duration of treatment. This comprehensive antioxidant action of ginseng seems to be bra certain action of ginseng other than a direct antioxidant action, which might be a long term normalizing effect through the harmony of various components.

  • PDF

The Screening of Hepatic Functional Improvement, Liver Protection and Antifibrotic Effect from Dried Extracts of Concha Cipangopaludinae in Rats (랫드에서 전라 추출물의 간기능 개선, 간보호 및 항섬유화 효과 검색)

  • Kim Hee Seok;Kim Jin Sook;Kim Ki young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.118-122
    • /
    • 2003
  • Oxidative stress and its consequent lipid peroxidation exert harmful effects, which have been currently involved in the generation of carbon tetrachloride (CCl₄)-induced fibrosis(cirrhosis). In this study, it was investigated whether dried extract of 田螺(Concha Cipangopaludinae; CC) has liver functional improvement, antioxidative and antifibrotic effect in rats those were induced liver fibrosis by CCl₄ administration. The female Sprague-Dawley rats were divided into 3 groups(Normal, AC, AC-CC) and were observed in 6 weeks. Except for normal group, liver fibrosis(cirrhosis) in rats were developed by CCl₄ administration(0.8 ㎖/rat/week). And the rats were treated with prepared CC(p. o. 2 ㎖/day/rat). At the time of sacrifice, the liver, kidney and spleen were weighed and the ratio of organ weight/body weight was calculated. The MDA, hyp and biochemical parameters(AST, ALT, ALP, t-bili) were measured in sera and liver tissue of rats. The strong yellow color of urine was observed in all CCl₄-treated group compared with normal group, but jaundice didn't appear in CCl₄-treated group. The mortality of CCl₄-treated group is very low(<13%) during 6 weeks of observation time. The ratio of liver/body as well as the weight of liver in CCl₄-treated rats significantly increased compared with that in normal group(p<0.001). The level of clinical parameters in sera of all liver fibrosis(cirrhosis) developed rats were significantly higher than that of normal group(p<0.001-0.05). Especially the value of BUN, ALP, t-bilirubin in AC-CC group showed 20.9%, 19.6%, 47.9% lower than that in AC group. The content of hyp in CCl₄-treated rats was significantly higher than normal group(p<0.001~<0.05), and showed 12.2% lower value in the AC-CC group than AC group(p<0.05). The production of lipid peroxidation(MDA) in sera and liver tissue significantly increased under the fibrotic(cirrhotic) condition(p<0.001~<0.05). Especially the MDA value of AC-CC group in sera significantly 46.5% decreased compared with that of AC group(p<0.05), and the MDA value of AC-CC in liver tissue showed 21.4% lower than that of AC group. Concha Cipangopaludinae can be improved hepatic function, and maybe have effect of liver protection, antioxidation and antifibrosis.

Does supplementing laying hen diets with a herb mixture mitigate the negative impacts of excessive inclusion of extruded flaxseed?

  • Hossein Hosseini;Noah Esmaeili;Aref Sepehr;Mahyar Zare;Artur Rombenso;Raied Badierah;Elrashdy M. Redwan
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.629-641
    • /
    • 2023
  • Objective: This study investigated the effects of extruded flaxseed with and without herbs mixture on egg performance, yolk fatty acids (FAs), lipid components, blood biochemistry, serological enzymes, antioxidants, and immune system of Hy-Line W-36 hens for nine weeks. Methods: Two hundred forty laying hens were randomly distributed to eight treatments, resulting in six replicates with five hens. Graded levels of dietary extruded flaxseed (0, 90, 180, and 270 g/kg) with and without herbs mixture (24 g/kg: garlic, ginger, green tea, and turmeric 6 g/kg each) were designed as treatments. Results: The two-way analysis of variance indicated that hens fed herbs mixture had a higher value of egg production, yolk high-density lipoprotein (HDL), superoxide dismutase, glutathione peroxidase, and white blood cell and lower contents of yolk cholesterol, glucose, and blood low-density lipoprotein than those fed diets without herb mixtures (p<0.05). The Flx27 (270 g/kg flaxseed) (153.5 g/kg n-3 FAs) and Flx27+H (270 g/kg flaxseed plus 24 g/kg herbs mixture) (150.5 g/kg n-3 FAs) groups were the most promising treatments in terms of yolk n-3 FAs content. In-teraction effect (herbs- flaxseed) for blood cholesterol, HDL, malondialdehyde, glutaredoxin, alanine transaminase, (ALT), aspartate transaminase (AST), haemoglobin and immune parameters was significant (p<0.05). The results showed layers fed herbs mixture (Flx9+H, Flx18+H, and Flx27+H) had a better value of total antibody, immunoglobulin M, immunoglobulin G, ALT, AST, and blood HDL as compared with representative flaxseed levels without herbs. Conclusion: High inclusion levels of extruded flaxseed (270 g/kg) without herbs to enrich eggs with n-3 appears to impair the antioxidant system, immunohematological parameters, and sero-logical enzymes. Interestingly, the herbs mixture supplementation corrected those effects. Therefore, feeding layers with flaxseed-rich diets (270 g/kg) and herbs mixture can be a promising strategy to enrich eggs with n-3 FAs.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Mechanism of Radioresistance Induced by Low-Dose Irradiation (저준위 방사선에 의해 유도된 방사선저항의 기전)

  • Park, Sang-Hee;Cho, Chul-Koo;Yoo, Seong-Yul;Lee, Yeon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 1996
  • After high-dose irradiation(8 Gy). the viability of lymphocyte with a prior low-dose irradiation was 3.7-fold higher than that without a prior low-dose irradiation The viability could be increased by the reduction of oxygen radicals or the removal of damaged molecules-DNA, protein. lipid membrane. or the removal of damaged cells. In this paper. we studied the radioresistance mechanism in lymphocytes and lymphoma cells by examining the activities of radical scavengers(catalase. peroxidase, superoxide dismutase, and glucose-6-phosphate dehydrogenase), and a radical protector(glutathione). Different enzymes were induced in lymphocyte and lymphoma with low-dose irradiation. The activity of peroxidase increased most(133.3%) in lymphoma while the enzymes increased most in lymphocyte were superoxide dismutase (138.5%), glucose-6-phosphate dehydrogenase (122.4%) and glutathione(120.8%). The activities of these enzymes were highest when the interval was 7 hours between low-dose and high-dose irradiation.

  • PDF

Protection of ROS-induced cytotoxicity and DNA damage by the extract of Alpinia of ficinarum (양강추출물의 활성산소종 유도 세포독성과 DNA 손상에 대한 방어효과)

  • 이승철;신경승;허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.2
    • /
    • pp.106-116
    • /
    • 2002
  • The 70% ethanol extract of Alpinia officinarum and its major flavonoid, galangin showed strong antioxidative effect on the lipid peroxidation of ethyl linolate with Fenton's reagent and free radical scavenging effect to DPPH radical generation. However, they did not reveal any pro-oxidant effect on bleomycin-Fe(III) dependent DNA degradation. They also showed the protective effect against $H_2O$$_2$, KO$_2$ or UV-induced cytotoxicity in mammalian cells. They also showed the suppressive effect of DNA damage induced by $H_2O$$_2$ or KO$_2$ with dose-dependent manner in single cell gel electrophoresis(SCGE) assay. On the other hand, they have an anticlastogenic effect against adriamycin-induced micronucleated reticulocyte in peripheral blood of mice. These results suggest that the mechanism of inhibition by 70% ethanol extract of Alpinia officinarum and galangin against reactive oxygen species (ROS)-induced genotoxicity or cytotoxicity is due, at least partly, to their antioxidative and free radical scavenging properties without pro-oxidant effect. All these results indicate that 70% ethanol extract of Alpinia officinarum and galangin may be useful for protection against ROS-induced cytotoxicity and DNA damage.

The Hepatotoxicity and the Effect of Antioxidative Vitamins by the Simultaneous Administration of Caffeine and Acetaminophen in vitro (Caffeine과 Acetaminophen으로 인한 간독성과 항산화성 비타민의 효과)

  • 노숙령;옥현이;이재관
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1173-1180
    • /
    • 1997
  • Hepatotoxicity of caffeine and acetaminophen was investigated in this study. Special attention was paid to the effect of vitamins on the reduction of hepatotoxicity caused by the chemicals. Rat hepaocytes isolated by two-step perfusion method were cultured in two differents methods-suspension, monolayer cultures-, and exposed to caffeine and/or acetaminophen for 24hrs. Caffeine or acetaminophen exhibited no significant hepatotoxicity in terms of intracellular glutathione(GSH) level and lipid peroxidation(MDA), but GSH level was significantly decreased after administrated acetaminophen, and the toxicity caused by the chemicals showed a dose-dependent manner. The synergistic effect of caffeine and acetaminophen was observed when both caffeine and acetaminophen were supplemented to culture medium. At the concentration 1mM, caffeine enhanced the intracellular GSH depletion and MDA formation by 63% and 64%, respectively, compared to single supplementation of 10mM acetaminophen in culture medium. This hepatotoxicity induced membrane integrity loss was observed by lightmicroscope on the simultaneous administration of caffeine and acetaminophen in monolayer cultured hepatocytes. Co-supplementation of vitamins with caffeine/acetaminophen to culture medium results in the protection of hepatocytes from hepatotoxic attach by caffeine/acetaminophen. Especially, vitamin E was superior to vitamin C and $\beta$-carotene from the standpoints of GSH depletion and MDA formation. From this results, it has been speculated that vitamin E may play a role of antioxidant scavenging radicals produced from acetaminophen. Taken all together, in vitro culture system like monolayer culture of hepatocytes may be a useful tool for the evaluation of hepatotoxicity or protection ability of food ingredients.

  • PDF

Heat Shock Protein Augmentation of Angelica gigas Nakai Root Hot Water Extract on Adipogenic Differentiation in Murine 3T3-L1 Preadipocytes

  • Lumbera, Wenchie Marie L.;Cruz, Joseph dela;Yang, Seung-Hak;Hwang, Seong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.419-427
    • /
    • 2016
  • There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at $42^{\circ}C$ for one hour and then allowed to recover at normal incubation temperature of $37^{\circ}C$ for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to $400{\mu}g/mL$) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression.