• Title/Summary/Keyword: Lipid alteration

Search Result 87, Processing Time 0.032 seconds

A Study for Perception of Hair Damage Using Friction Coefficient of Human Hair (모발의 마찰계수를 통한 모발 손상 인식 연구)

  • Lim, Byung Tack;Seo, Hong An;Song, Sang-Hun;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.295-305
    • /
    • 2020
  • Treatment for beauty using oxidizing agents damages hair with inducing structural alteration in cuticle layer, degradation of protein, and loss of lipid. This study connects a frictional coefficient upon the damaged hair by an instrumental test to the texture test by human being, and considered a moisture as a factor of the damage. A friction coefficient has been measured upon the hair with successive treatment of dye, perm, and bleach. The friction coefficient from the hair dye-treated three times was defined with 0.60, where 58% of answerer indicated an initial damage point as the hairs of iteration of dye-treatment increased. Even bleach treated three times results in 0.84 of friction coefficient corresponding to 88% of answerer attributed the hair to an initially damaged hair. In order to figure out a lipid loss in hair for human being to respond damage, a friction coefficient of the hair was controlled by removing 18-methyleicosanoic acid (18-MEA). The initial damage has been recognized by 0.60 of the friction coefficient for the 68% of answerer. Since moisture is the largest portion of the components in hair, moisture analysis has been performed to study a relationship between texture of damage and the friction coefficient from an instrumental evaluation. As an iteration of dye increases, the hair became hydrophilic with smaller contact angle. It is found that a damaged hair by dyeing possessed more than 0.42% of moisture compared to a healthy hair. Finally, it is elucidated that an increase of moisture in hair induced higher adhesive force corresponding to the friction coefficient, and the friction coefficient above 0.6 is attributed to the preception of hair damage.

Effect of Pumpkin, Corn Silk, Adzuki Bean, and Their Mixture on Weight Control and Antioxidant Activities in High Fat Diet-Induced Obesity Rats (호박즙, 옥수수수염차, 팥차 및 혼합물이 식이유도 비만동물모델에서 체중과 항산화 활성에 미치는 영향)

  • Park, Jae-Hee;Lee, Eunji;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1239-1248
    • /
    • 2016
  • Pumpkin juice (PJ), corn silk tea (CT), and adzuki bean tea (AT) have long been used for treatment of obesity in Korea. This study investigated the efficacy of PJ, CT, AT, and their mixture (PCA) on alteration of body weight and antioxidant metabolism in high-fat diet (HFD)-induced obese rats. After being fed HFD for 4 weeks, SD rats were divided into six groups fed a normal diet (ND), HFD, HFD+PJ [250 mg/kg body weight (BW)], HFD+CT (250 mg/kg BW), HFD+AT (250 mg/kg BW), and HFD+PCA (PJ : CT : AT=1:1:1, 250 mg/kg BW) for another 9 weeks. HFD consumption resulted in total lipid, triglyceride, and total cholesterol accumulation in adipose tissue, which was reduced by administration of PJ, CT, AT, or PCA. The plasma oxygen radical absorbance capacity value and hepatic glutathione peroxidase activity significantly increased compared to the HFD group. The liver thiobarbituric acid reactive substances was significantly lower in the PCA group than the HFD group. HFD-induced DNA damage in hepatocytes, as measured by comet assay, decreased in the PJ, AT, and PCA-supplemented groups. The PCA group exerted a superior antigenotoxic effect compared to other treatments. PCA recovered the concentration of plasma adiponectin, which was reduced by HFD. Adipocyte surface area (%) was significantly higher in the HFD group than the ND group, significantly lower in the PJ and PCA groups than the HFD group, and not significantly different compared with the ND group. Based on the results, supplementation of PJ, CT, AT, and PCA exhibited lipid-lowering effects in adipocytes of HFD-induced obese rats. Furthermore, the PCA group exhibited superior antioxidant activity in all treated groups. This study suggests that a mixed beverage consisting of PJ, CT, and AT may be a significant source of natural antioxidants, which might be helpful in preventing obesity and progress of various oxidative stresses induced by HFD.

Antioxidant Effect of Hederagenin 3-O-b-D-Glucopyranosyl(1→3)-a-L-Rhamnopyranosyl(1→2)-a-L-Arabinopyranoside (HDL) Isolated from Root Bark of Ulmus davidiana (유근피로부터 분리한 hederagenin 3-O-b-D-glucopyranosyl(1→3)-a-L-rhamnopyranosyl(1→2)-a-L-arabinopyranoside (HDL)의 항산화 효과)

  • Bong, Jin-Gu;Park, Yoon-Yub
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.281-291
    • /
    • 2010
  • We investigated the antioxidant effects of hederagenin 3-O-b-D-glucopyranosyl($1{\rightarrow}3$)-a-L-rhamnopyranosyl($1{\rightarrow}2$)-a-L-arabinopyranoside (HDL) isolated from root bark of Ulmus davidiana on the activity of enzymes related to reactive oxygen species (ROS) in human osteosarcoma U2OS cells. Cobalt chloride ($CoCl_2$), a transition metal, was used as an inducer of oxidative stress, generating hydrogen peroxide ($H_2O_2$) via increasing xanthine oxidase (XO) activity. The increased levels of $H_2O_2$, XO, ferritin, and ferritin iron by $CoCl_2$ were diminished effectively by co-treatment with HDL in U2OS cells. Furthermore, decreased levels of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) by $CoCl_2$ were highly increased by co-treatment with HDL in U2OS cells; however, the levels of glutathione peroxidase (GPx) did not change. The increased contents of TBARS related to lipid peroxidation were significantly reduced by HDL in U2OS cells. The concentration of GSH changed in a pattern that went against regulated TBARS by $CoCl_2$ and HDL. We examined the expression of p53, $p21^{CIP1/WAF1}$, and $p27^{KIP1}$ proteins related to oxidative stress and cell cycle regulation. As a result, the expression of $p27^{KIP1}$ modulated by $CoCl_2$ was not changed by HDL. However, the expression of p53 and $p21^{CIP1/WAF}$ increased by $CoCl_2$ was reduced by HDL in U2OS cells. Together with alteration of p53 and $p21^{CIP1/WAF1}$ proteins, the accumulated cells at G1 phase by $CoCl_2$ was decreased by HDL in U2OS cells. Our data suggests that HDL inhibits $CoCl_2$-generated ROS in U2OS cells, providing potentially new antioxidant compounds that are isolated from natural products.

Growth Effect of Oncorhychus masou by Recombinant Myostatin Prodomain Proteins Derived from Fish (어류 유래 마이오스타틴 프로도메인 단백질에 의한 시마연어(Oncorhychus masou) 성장효과)

  • Kim, Jeong-Hwan;Lee, Sang-Beum;Cho, Mi-Jin;Ahn, Ji-Young;Lee, Suk-Keun;Hong, Sung-Youl;Seong, Ki-Baik;Jin, Hyung-Joo
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1149-1155
    • /
    • 2011
  • Myostatin (MSTN) belongs to the transforming growth factor-${\beta}$ superfamily or growth and differentiation factor 8 (GDF-8), and functions as a negative regulator of skeletal muscle development and growth. Previous studies in mammals have suggested that myostatin knock-out increased muscle mass and decreased fat content compared to those of the wide type. Recently, several studies on myostatin have beenconducted on the block myostatin signal pathway with myostatin antagonists and the MSTN regulation with RNAi to control myostatin function. This study was performed to analyze growth and muscle alteration of Oncorhychus masou by treatment with recombinant myostatin prodomains derived from fish. We designed myostatin prodomains derived from P. olivaceus (pMALc2x-poMSTNpro) and S. schlegeli (pMALc2x-sMSTNpro) in a pMALc2x expression vector, and then purified the recombinant proteins using affinity chromatography. The purified recombinant proteins were treated in O. masou through an immersion method. Recombinant protein treated groups did not show a significant difference in weight, protein, or lipid composition compared to the control. However, there was a difference in the average number and area for histological analyses in the muscle fiber. At twelve and twenty-two weeks from the initial treatment, there were differences in averagefiber number and area between the 0.05 mg/l treated-group and the control, but the numbers were similar to those of the control during the same time period. At twelve weeks, however, 0.2 mg/l treated-group had an increase in average fiber number and decrease in average fiber area compared to the control. At twenty-two weeks, the pMALc2x-sMSTNpro 0.2 mg/l treated-group was induced and showed a decrease in average fiber number and increase in average fiber area. The results between twelve and twenty-two weeks showed that the fiber numbers had decreased, whereas average fiberarea had increased due to sMSTNpro. It is understood that the sMSTNpro induced only hyperplasia at twelve weeks, after which it induced hypertrophy. Recombinant myostatin prodomains derived from fish may induce hyperplasia and hypertrophy in O. masou depending upon the time that has elapsed.

The effect of two Terpenoids, Ursolic acid and Oleanolic acid on epidermal permeability barrier and simultaneously on dermal functions

  • Lim Suk Won;Jung Sung Won;Ahn Sung Ku;Kim Bora;Ryoo Hee Chang;Lee Seung Hun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.205-232
    • /
    • 2003
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1 mg/ml UA or 0.1-1 mg/ml ONA after tape stripping, and TEWL (Transepidermal water loss) was measured . The recovery rate increased in those UA or ONA treated groups (0.1 mg/ml UA and 0.5 mg/ml ONA) at 6 h more than $20\%$ compared to vehicle treated group (p<0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/ml per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from f week without TEWL alteration (p<0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent $(ONA{\geq}UA>Vehicle)$. LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA>ONA>Veh). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via $PPAR\;\alpha$. Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either $ONA\;(10{\mu}M)$ or UA $(10{\mu}M)$ for 24h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via $PPAR\;{\alpha}$. Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.

Protective Effect of Saengshik Supplementation on Lead Induced Toxicity in Rats (생식의 섭취가 납중독 흰쥐의 피해 경감에 미치는 영향에 관한 연구)

  • Oh, Young-Joo;Kim, Jae-Min;Song, Si-Wan;Ha, Hyo-Cheol;Kim, Hyun-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.959-967
    • /
    • 2005
  • Lead is a ubiquitous environmental and industrial pollutant that causes a major health concerns. It is known to induce a broad range of physiological, biochemical, and behavioral dysfunctions in laboratory and humans, including hematopoietic system, kidneys, liver, and reproductive system. This study was conducted to investigate the effect of Saengshik supplementation on the lead-induced toxicity in rats. Five week old male Sprague­Dawley rats were randomly assigned to five groups for six weeks as followings: control group (CT), lead acetate treated group (PT), and lead acetate groups administered with three different dosages of Saengshik $(SI2.5-12.5\%,\;S25-25\%,\;and\;S50-50\%).$ Lead acetate (12 mg/rat) was intragastrically administered daily for 6 weeks. The results were summarized as follows; Weight gain and food efficiency ratio were significantly lower (p<0.05) in lead administered group compared with those of the control group. Also, significant lead-induced alteration in blood hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and reticulocyte distribution width (RDW) were observed. In the liver of lead-exposed animals, there was an increase in the lipid peroxidation (MDA) and the level of glutathione (GSH), but superoxiede dismutase (SOD) activity did not change. Lead-exposed animals with $25\%\;and\;50\%$ Saengshik supplementation showed marked improvements in the values of MCH, MCV, and RDW. Also, the level of HCT was significantly increased by $50\%$ Saengshik supplementation. The levels of liver MDA in $12.5\%\;and\;50\%$ Saengshik administered groups and GSH level in $50\%$ Saengshik administered group were significantly decreased compared to the lead administered group. Also, hepatic SOD activity tended to increase in the presence of Saengshik supplementation. Furthermore, the accumulation of lead in liver and kidney was reduced by presence of Saneghshik supplementation. Liver lead concentration was significantly reduced by both $25\%\;and\;50\%$ Saengshik supplementations and kidney lead concentration was significantly reduced by the $25\%$ Saengshik supplementation. These results show that Saengshik may have a protective effect against lead intoxication but the mechanism of their effects remains unclear.

The Effect of Two Terpenoids, Ursolic Acid and Oleanolic Acid on Epidermal Permeability Barrier and Simultaneously on Dermal Functions (우솔릭산과 올레아놀산이 피부장벽과 진피에 미치는 영향에 대한 연구)

  • Suk Won, Lim;Sung Won, Jung;Sung Ku, Ahn;Bora, Kim;In Young, Kim;Hee Chang , Ryoo;Seung Hun, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.263-278
    • /
    • 2004
  • Ursolic acid (UA) and Oleanolic acid (ONA), known as urson, micromerol and malol, are pentacyclic triterpenoid compounds which naturally occur in a large number of vegetarian foods, medicinal herbs, and plants. They may occur in their free acid form or as aglycones for triterpenoid saponins, which are comprised of a triterpenoid aglycone, linked to one or more sugar moieties. Therefore UA and ONA are similar in pharmacological activity. Lately scientific research, which led to the identification of UA and ONA, revealed that several pharmacological effects, such as antitumor, hepato-protective, anti-inflammatory, anticarcinogenic, antimicrobial, and anti-hyperlipidemic could be attributed to UA and ONA. Here, we introduced the effect of UA and ONA on acutely barrier disrupted and normal hairless mouse skin. To evaluate the effects of UA and ONA on epidermal permeability barrier recovery, both flanks of 8-12 week-old hairless mice were topically treated with either 0.01-0.1mg/mL UA or 0.1-1mg/mL ONA after tape stripping, and TEWL (transepidermal water loss) was measured. The recovery rate increased in those UA or ONA treated groups (0.1mg/mL UA and 0.5mg/mL ONA) at 6h more than 20% compared to vehicle treated group (p < 0.05). Here, we introduced the effects of UA and ONA on acute barrier disruption and normal epidermal permeability barrier function. For verifying the effects of UA and ONA on normal epidermal barrier, hydration and TEWL were measured for 1 and 3 weeks after UA and ONA applications (2mg/mL per day). We also investigated the features of epidermis and dermis using electron microscopy (EM) and light microscopy (LM). Both samples increased hydration compared to vehicle group from 1 week without TEWL alteration (p < 0.005). EM examination using RuO4 and OsO4 fixation revealed that secretion and numbers of lamellar bodies and complete formation of lipid bilayers were most prominent (ONA=UA > vehicle). LM finding showed that thickness of stratum corneum (SC) was slightly increased and especially epidermal thickening and flattening was observed (UA > ONA > vehicle). We also observed that UA and ONA stimulate epidermal keratinocyte differentiation via PPAR Protein expression of involucrin, loricrin, and filaggrin increased at least 2 and 3 fold in HaCaT cells treated with either ONA (10${\mu}$M) or UA (10${\mu}$M) for 24 h respectively. This result suggested that the UA and ONA can improve epidermal permeability barrier function and induce the epidermal keratinocyte differentiation via PPAR Using Masson-trichrome and elastic fiber staining, we observed collagen thickening and elastic fiber elongation by UA and ONA treatments. In vitro results of collagen and elastin synthesis and elastase inhibitory activity measurements were also confirmed in vivo findings. These data suggested that the effects of UA and ONA related to not only epidermal permeability barrier functions but also dermal collagen and elastic fiber synthesis. Taken together, UA and ONA can be relevant candidates to improve epidermal and dermal functions and pertinent agents for cosmeseutical applications.