Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.8.1149

Growth Effect of Oncorhychus masou by Recombinant Myostatin Prodomain Proteins Derived from Fish  

Kim, Jeong-Hwan (Department of Marine Molecular Biotechnology, Gangnung-Wonju National University)
Lee, Sang-Beum (Department of Marine Molecular Biotechnology, Gangnung-Wonju National University)
Cho, Mi-Jin (Department of Marine Molecular Biotechnology, Gangnung-Wonju National University)
Ahn, Ji-Young (Marine application Biotechnology, Marine Bioindustry cooperation, Gangnung-Wonju National University)
Lee, Suk-Keun (Department of pathology, College of dentistry, Gangnung-Wonju National University)
Hong, Sung-Youl (Gyeonggi Province Freshwater Fisheries Research Institute)
Seong, Ki-Baik (Inland Aquaculture Research Center, NFRDI)
Jin, Hyung-Joo (Department of Marine Molecular Biotechnology, Gangnung-Wonju National University)
Publication Information
Journal of Life Science / v.21, no.8, 2011 , pp. 1149-1155 More about this Journal
Abstract
Myostatin (MSTN) belongs to the transforming growth factor-${\beta}$ superfamily or growth and differentiation factor 8 (GDF-8), and functions as a negative regulator of skeletal muscle development and growth. Previous studies in mammals have suggested that myostatin knock-out increased muscle mass and decreased fat content compared to those of the wide type. Recently, several studies on myostatin have beenconducted on the block myostatin signal pathway with myostatin antagonists and the MSTN regulation with RNAi to control myostatin function. This study was performed to analyze growth and muscle alteration of Oncorhychus masou by treatment with recombinant myostatin prodomains derived from fish. We designed myostatin prodomains derived from P. olivaceus (pMALc2x-poMSTNpro) and S. schlegeli (pMALc2x-sMSTNpro) in a pMALc2x expression vector, and then purified the recombinant proteins using affinity chromatography. The purified recombinant proteins were treated in O. masou through an immersion method. Recombinant protein treated groups did not show a significant difference in weight, protein, or lipid composition compared to the control. However, there was a difference in the average number and area for histological analyses in the muscle fiber. At twelve and twenty-two weeks from the initial treatment, there were differences in averagefiber number and area between the 0.05 mg/l treated-group and the control, but the numbers were similar to those of the control during the same time period. At twelve weeks, however, 0.2 mg/l treated-group had an increase in average fiber number and decrease in average fiber area compared to the control. At twenty-two weeks, the pMALc2x-sMSTNpro 0.2 mg/l treated-group was induced and showed a decrease in average fiber number and increase in average fiber area. The results between twelve and twenty-two weeks showed that the fiber numbers had decreased, whereas average fiberarea had increased due to sMSTNpro. It is understood that the sMSTNpro induced only hyperplasia at twelve weeks, after which it induced hypertrophy. Recombinant myostatin prodomains derived from fish may induce hyperplasia and hypertrophy in O. masou depending upon the time that has elapsed.
Keywords
Myostatin; prodomain; Oncorhychus masou; Paralichthys olicaveus; Sebasted schlegeli;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, H. X., Q. Zhang, and D. H. Zhu. 2003. hSGT interacts with the N-terminal region of myostatin. Biochem. Biophys. Res. Commun. 311, 877-883.   DOI
2 Xu, C., G. Wu, Y. Zohar, and S. J. Du. 2003. Analysis of myostatin gene structure, expression and function in zebrafish. J. Exp. Biol. 206, 4067-4079.   DOI
3 Yang, J., T. Ratovitski, J. P. Brady, M. B. Solomon, K. D. Wells, and R. J. Wall. 2001. Expression of myostatin pro-domain results in muscular transgenic mice. Mol. Reprod. Dev. 60, 51-61.
4 Zhang, P., X. Chen, and M. Fan. 2007. Signaling mechanisms involved in disuse muscle atrophy. Med. Hypotheses 69, 310-321.   DOI
5 Patruno, M., S. Sivieri, and C. Poltronieri. 2008. Real-time polymerase chain reaction, in situ hybridization and immunohistochemical localization of insulin-like growth factor-I and myostatin during development of Dicentrarchus labrax (Pisces : Ostei-chthyes). Cell Tissue Res. 331, 643-658.   DOI
6 Rescan, P. Y., I. Jutel, and C. Ralliere. 2001. Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss). J. Exp. Biol. 204, 3523-3529.
7 Rescan, P. Y. 2008. New insights into skeletal muscle development and growth in teleost fishes. J. Exp. Zoology (Mol. Dev. Evol.). 310B, 541-548.   DOI
8 Robert, S. B. and F. W. Goetz. 2001. Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. FEBS Lett. 491, 212-216.   DOI
9 Robert, S. B. and F. W. Goetz. 2003. Myostatin protein and RNA transcript levels in adult and developing brook trout. Mol. Cell Endocrinol. 210, 9-20.   DOI
10 Sawatari, E., R. Seki, T. Adachi, H. Hashimoto, S. Uji, and Y. Wakamatsu. 2010. Overexpression of the dominant-negative form of myostatin results in doubling of muscle-fiber number in transgenic medaka (Oryzias latipes). Comp. Biochem. Physiol. Part A. 155, 183-189.   DOI
11 Stickland, N. C. 1983. Growth and development of muscle fibers in the rainbow trout (Salmo gairdneri). J. Anat. 137, 323-333.
12 McPherron, A. C., A. M. Lawler, and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-$\beta$ superfamily member. Nature 387, 83-90.   DOI   ScienceOn
13 Tomas, M., B. Langley, C. Berry, M. Sharma, S. Kirt, J. Bass, and R. Kambadur. 2000. Myostatin, a Negative Regulator of Muscle Growth, Functions by Inhibiting Myoblast Proliferation. J. Biol. Chem. 275, 40235-40243.   DOI
14 Thomson, A. W., H. R. Turnquist, and G. Raimondi. 2009. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9, 324-337.   DOI
15 Martin, C. I. and I. A. Johnston. 2005. The role of myostatin and the calcineurin-signalling pathway in regulating muscle mass in response to exercise training in the rainbow trout Oncorhynchus mykiss Walbaum. J. Exp. Biol. 208, 2083-2090.   DOI
16 McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94, 12457-12461.   DOI
17 McPherron, A. C. and S. J. Lee. 2002. Suppression of body fat accumulation in myostatin deficient mice. J. Clin. Invest. 109, 595-601.   DOI
18 Morrison, B. M., J. L. Lachey, L. C. Warsing, B. L. Ting, A. E. Pullen, and K. W. Underwood. 2009. A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 217, 258-268.   DOI
19 Nakamura, T., K. Takio, Y. Eto, H. Shibai, K. Titani, and H. Sugino. 1990. Activin-binding protein from rat ovary I follistatin. Science 247, 836-838.   DOI
20 Nicholas, G., M. Thomas, B. Langley, W. Somers, K. Patel, C.F. Kemp, M. Sharma, and R. Kambadur. 2002. Titin-cap associates with, and regulates secretion of myostatin. J. Cell Physiol. 193, 120-131.   DOI
21 Hill, J. J., M. V. Davies, A. A. Pearson, J. H. Wang, R. M. Hewick, N. M. Wolfman, and Y. C. Qiu. 2002. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277, 40735-40741.   DOI
22 Ostbye, T. K., T. F. Galloway, C. Nielsen, I. Gabestad, T. Bardal, and O. Andersen. 2001. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur. J. Biochem. 268, 5249-5257.   DOI
23 Ostbye, T. K., T. Bardal, A. Vegusdal, O. T. Frang, E. Kjorsvik, and O. Andersen. 2007. Molecular cloning of the Atlantic salmon activin receptor IIB cDNA localization of the receptor and myostatin in vivo and in vitro in muscle cells. Comp. Biochem. Physiol. Part D 2, 101-111.
24 Grobet, L., L. J. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hanset, and M. Georges. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71-74.   DOI
25 Hill, J. J., Y. Qiu, R. M. Hewick, and N. M. Wolfman. 2003. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol. Endocrinol. 17, 1144-1154.   DOI
26 Kambadur, R., M. Sharma, T. P. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF 8) in double-muscled Belgian blue and Piedmontese cattle. Genome Res. 7, 910-916.
27 Kiessling, A., K. Ruohonen, and M. Bjørnevik. 2006. Muscle fiber growth and quality in fish. Arch. Tierz Dummerstorf 49, 137-146.
28 Lee, C. Y., S. Y. Hu, and H. Y. Gong. 2009. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem. Biophys. Res. Commun. 387, 766-771.   DOI
29 Lee, S. B., Y. S. Kim, M. Y. Oh, I. H. Jeong, K. B. Seong, and H. J. Jin 2010. Improving rainbow trout (Oncorhynchus mykiss) growth by treatment with a fish (Paralichthys olivaceus) myostatin prodomain expressed in soluble forms in E. coli. Aquaculture 302, 270-278.   DOI
30 Lin, J., H. B. Arnold, and M. A. Della-Fera. 2002. Myostatin knockout in mice increase myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 291, 701-706.   DOI
31 Lee, S. J. and A. C. McPherron. 2001. Regulation of myostatin activity and muscle growth, Proc. Natl. Acad. Sci. USA 98, 9306-9311.   DOI
32 Acosta, J., Y. Carpio, I. Borroto, O. González, and M. P. Estrada. 2005. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotech. 119, 324-331.   DOI
33 Amali, A. A., C. J. Lin, Y. H. Chen, W. L. Wang, H. Y. Gong, C. Y. Lee, Y. L. Ko, J. K. Lu, G. M. Her, T. T. Chen, and J. L. Wu. 2004. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev. Dyn. 229, 847-856.   DOI
34 AOAC. 2005. Official Method of Analysis of AOAC International, 18th eds.
35 Duncan, D. B. 1955. Multiple Range and Multiple F Tests. Biometrics 11, 1-42.   DOI
36 Gonzalez-Cadavid, N. F., W. E. Taylor, K. Yarasheski, I. Sinha-Hikim, K. Ma, S. Ezzat, R. Q. Shen, R. Lalani, S. Asa, M. Mamita, G. Nair, S. Arver, and S. Bhasin. 1998. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc. Natl. Acad. Sci. USA 95, 14938-14943.   DOI
37 Dominique, J. E. and C. Gerard. 2006. Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects, Exp. Cell Res. 312, 2401-2414.   DOI
38 Ennion, S., L. Gauvry, P. Butterworth, and G. Goldspink. 1995. Small-diameter white myotomal muscle fibres associated with growth hyperplasia in the carp (Cyprinus carpio) express a distinct myosin heavy chain gene. J. Exp. Biol. 198, 1603-1611.