Growth Effect of Oncorhychus masou by Recombinant Myostatin Prodomain Proteins Derived from Fish

어류 유래 마이오스타틴 프로도메인 단백질에 의한 시마연어(Oncorhychus masou) 성장효과

  • Kim, Jeong-Hwan (Department of Marine Molecular Biotechnology, Gangnung-Wonju National University) ;
  • Lee, Sang-Beum (Department of Marine Molecular Biotechnology, Gangnung-Wonju National University) ;
  • Cho, Mi-Jin (Department of Marine Molecular Biotechnology, Gangnung-Wonju National University) ;
  • Ahn, Ji-Young (Marine application Biotechnology, Marine Bioindustry cooperation, Gangnung-Wonju National University) ;
  • Lee, Suk-Keun (Department of pathology, College of dentistry, Gangnung-Wonju National University) ;
  • Hong, Sung-Youl (Gyeonggi Province Freshwater Fisheries Research Institute) ;
  • Seong, Ki-Baik (Inland Aquaculture Research Center, NFRDI) ;
  • Jin, Hyung-Joo (Department of Marine Molecular Biotechnology, Gangnung-Wonju National University)
  • 김정환 (강릉원주대학교 해양분자생명공학과) ;
  • 이상범 (강릉원주대학교 해양분자생명공학과) ;
  • 조미진 (강릉원주대학교 해양분자생명공학과) ;
  • 안지영 (강릉원주대학교 해양바이오협동과정 해양응용생명공학) ;
  • 이석근 (강릉원주대학교 치과대학 구강병리학교실) ;
  • 홍성열 (경기도민물고기연구소) ;
  • 성기백 (국립수산과학원 내수면양식연구센터) ;
  • 진형주 (강릉원주대학교 해양분자생명공학과)
  • Received : 2011.05.12
  • Accepted : 2011.08.04
  • Published : 2011.08.30


Myostatin (MSTN) belongs to the transforming growth factor-${\beta}$ superfamily or growth and differentiation factor 8 (GDF-8), and functions as a negative regulator of skeletal muscle development and growth. Previous studies in mammals have suggested that myostatin knock-out increased muscle mass and decreased fat content compared to those of the wide type. Recently, several studies on myostatin have beenconducted on the block myostatin signal pathway with myostatin antagonists and the MSTN regulation with RNAi to control myostatin function. This study was performed to analyze growth and muscle alteration of Oncorhychus masou by treatment with recombinant myostatin prodomains derived from fish. We designed myostatin prodomains derived from P. olivaceus (pMALc2x-poMSTNpro) and S. schlegeli (pMALc2x-sMSTNpro) in a pMALc2x expression vector, and then purified the recombinant proteins using affinity chromatography. The purified recombinant proteins were treated in O. masou through an immersion method. Recombinant protein treated groups did not show a significant difference in weight, protein, or lipid composition compared to the control. However, there was a difference in the average number and area for histological analyses in the muscle fiber. At twelve and twenty-two weeks from the initial treatment, there were differences in averagefiber number and area between the 0.05 mg/l treated-group and the control, but the numbers were similar to those of the control during the same time period. At twelve weeks, however, 0.2 mg/l treated-group had an increase in average fiber number and decrease in average fiber area compared to the control. At twenty-two weeks, the pMALc2x-sMSTNpro 0.2 mg/l treated-group was induced and showed a decrease in average fiber number and increase in average fiber area. The results between twelve and twenty-two weeks showed that the fiber numbers had decreased, whereas average fiberarea had increased due to sMSTNpro. It is understood that the sMSTNpro induced only hyperplasia at twelve weeks, after which it induced hypertrophy. Recombinant myostatin prodomains derived from fish may induce hyperplasia and hypertrophy in O. masou depending upon the time that has elapsed.

성장과 분화를 조절하는 인자인 myostatin은 포유류에서 주로 골격근에 분포하며 근육성장을 억제하는 것으로 알려져 있다. Myostatin은 포유류에서뿐만 아니라 어류에 있어서도 그 기능이 유사하며 본 연구에서는 넙치와 조피볼락 유래 재조합 myostatin 단백질을 생산하여 시마연어에 침지방법을 통해 처리하였다. 처리 결과 시마연어의 무게와 생화학 분석에서는 유의성이 나타날 정도의 증가는 없었지만 근(muscle) 조직학적 분석에서 넙치와 조피볼락 유래 재조합 myostatin prodomain에 의해 12주째에는 세포의 수가 증가하는 hyperplasia가 일어났으며 22주째에는 조피볼락 유래의 재조합 myostatin prodomain을 처리한 군에서만 hypertrophy가 일어났다. 결론적으로 어류 유래 재조합 myostatin prodomain이 시마연어 근육성장 시 hyperplasia와 hypertrophy가 순차적으로 유도되는 것으로 확인되었다.



  1. Acosta, J., Y. Carpio, I. Borroto, O. González, and M. P. Estrada. 2005. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotech. 119, 324-331.
  2. Amali, A. A., C. J. Lin, Y. H. Chen, W. L. Wang, H. Y. Gong, C. Y. Lee, Y. L. Ko, J. K. Lu, G. M. Her, T. T. Chen, and J. L. Wu. 2004. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev. Dyn. 229, 847-856.
  3. AOAC. 2005. Official Method of Analysis of AOAC International, 18th eds.
  4. Duncan, D. B. 1955. Multiple Range and Multiple F Tests. Biometrics 11, 1-42.
  5. Dominique, J. E. and C. Gerard. 2006. Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects, Exp. Cell Res. 312, 2401-2414.
  6. Ennion, S., L. Gauvry, P. Butterworth, and G. Goldspink. 1995. Small-diameter white myotomal muscle fibres associated with growth hyperplasia in the carp (Cyprinus carpio) express a distinct myosin heavy chain gene. J. Exp. Biol. 198, 1603-1611.
  7. Gonzalez-Cadavid, N. F., W. E. Taylor, K. Yarasheski, I. Sinha-Hikim, K. Ma, S. Ezzat, R. Q. Shen, R. Lalani, S. Asa, M. Mamita, G. Nair, S. Arver, and S. Bhasin. 1998. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc. Natl. Acad. Sci. USA 95, 14938-14943.
  8. Grobet, L., L. J. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Massabanda, R. Fries, R. Hanset, and M. Georges. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71-74.
  9. Hill, J. J., M. V. Davies, A. A. Pearson, J. H. Wang, R. M. Hewick, N. M. Wolfman, and Y. C. Qiu. 2002. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277, 40735-40741.
  10. Hill, J. J., Y. Qiu, R. M. Hewick, and N. M. Wolfman. 2003. Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Mol. Endocrinol. 17, 1144-1154.
  11. Kambadur, R., M. Sharma, T. P. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF 8) in double-muscled Belgian blue and Piedmontese cattle. Genome Res. 7, 910-916.
  12. Kiessling, A., K. Ruohonen, and M. Bjørnevik. 2006. Muscle fiber growth and quality in fish. Arch. Tierz Dummerstorf 49, 137-146.
  13. Lee, C. Y., S. Y. Hu, and H. Y. Gong. 2009. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem. Biophys. Res. Commun. 387, 766-771.
  14. Lin, J., H. B. Arnold, and M. A. Della-Fera. 2002. Myostatin knockout in mice increase myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 291, 701-706.
  15. Lee, S. B., Y. S. Kim, M. Y. Oh, I. H. Jeong, K. B. Seong, and H. J. Jin 2010. Improving rainbow trout (Oncorhynchus mykiss) growth by treatment with a fish (Paralichthys olivaceus) myostatin prodomain expressed in soluble forms in E. coli. Aquaculture 302, 270-278.
  16. Lee, S. J. and A. C. McPherron. 2001. Regulation of myostatin activity and muscle growth, Proc. Natl. Acad. Sci. USA 98, 9306-9311.
  17. Martin, C. I. and I. A. Johnston. 2005. The role of myostatin and the calcineurin-signalling pathway in regulating muscle mass in response to exercise training in the rainbow trout Oncorhynchus mykiss Walbaum. J. Exp. Biol. 208, 2083-2090.
  18. McPherron, A. C., A. M. Lawler, and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-$\beta$ superfamily member. Nature 387, 83-90.
  19. McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94, 12457-12461.
  20. McPherron, A. C. and S. J. Lee. 2002. Suppression of body fat accumulation in myostatin deficient mice. J. Clin. Invest. 109, 595-601.
  21. Morrison, B. M., J. L. Lachey, L. C. Warsing, B. L. Ting, A. E. Pullen, and K. W. Underwood. 2009. A soluble activin type IIB receptor improves function in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 217, 258-268.
  22. Nakamura, T., K. Takio, Y. Eto, H. Shibai, K. Titani, and H. Sugino. 1990. Activin-binding protein from rat ovary I follistatin. Science 247, 836-838.
  23. Nicholas, G., M. Thomas, B. Langley, W. Somers, K. Patel, C.F. Kemp, M. Sharma, and R. Kambadur. 2002. Titin-cap associates with, and regulates secretion of myostatin. J. Cell Physiol. 193, 120-131.
  24. Ostbye, T. K., T. F. Galloway, C. Nielsen, I. Gabestad, T. Bardal, and O. Andersen. 2001. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur. J. Biochem. 268, 5249-5257.
  25. Ostbye, T. K., T. Bardal, A. Vegusdal, O. T. Frang, E. Kjorsvik, and O. Andersen. 2007. Molecular cloning of the Atlantic salmon activin receptor IIB cDNA localization of the receptor and myostatin in vivo and in vitro in muscle cells. Comp. Biochem. Physiol. Part D 2, 101-111.
  26. Patruno, M., S. Sivieri, and C. Poltronieri. 2008. Real-time polymerase chain reaction, in situ hybridization and immunohistochemical localization of insulin-like growth factor-I and myostatin during development of Dicentrarchus labrax (Pisces : Ostei-chthyes). Cell Tissue Res. 331, 643-658.
  27. Rescan, P. Y., I. Jutel, and C. Ralliere. 2001. Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss). J. Exp. Biol. 204, 3523-3529.
  28. Rescan, P. Y. 2008. New insights into skeletal muscle development and growth in teleost fishes. J. Exp. Zoology (Mol. Dev. Evol.). 310B, 541-548.
  29. Robert, S. B. and F. W. Goetz. 2001. Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. FEBS Lett. 491, 212-216.
  30. Robert, S. B. and F. W. Goetz. 2003. Myostatin protein and RNA transcript levels in adult and developing brook trout. Mol. Cell Endocrinol. 210, 9-20.
  31. Sawatari, E., R. Seki, T. Adachi, H. Hashimoto, S. Uji, and Y. Wakamatsu. 2010. Overexpression of the dominant-negative form of myostatin results in doubling of muscle-fiber number in transgenic medaka (Oryzias latipes). Comp. Biochem. Physiol. Part A. 155, 183-189.
  32. Stickland, N. C. 1983. Growth and development of muscle fibers in the rainbow trout (Salmo gairdneri). J. Anat. 137, 323-333.
  33. Tomas, M., B. Langley, C. Berry, M. Sharma, S. Kirt, J. Bass, and R. Kambadur. 2000. Myostatin, a Negative Regulator of Muscle Growth, Functions by Inhibiting Myoblast Proliferation. J. Biol. Chem. 275, 40235-40243.
  34. Thomson, A. W., H. R. Turnquist, and G. Raimondi. 2009. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 9, 324-337.
  35. Wang, H. X., Q. Zhang, and D. H. Zhu. 2003. hSGT interacts with the N-terminal region of myostatin. Biochem. Biophys. Res. Commun. 311, 877-883.
  36. Xu, C., G. Wu, Y. Zohar, and S. J. Du. 2003. Analysis of myostatin gene structure, expression and function in zebrafish. J. Exp. Biol. 206, 4067-4079.
  37. Yang, J., T. Ratovitski, J. P. Brady, M. B. Solomon, K. D. Wells, and R. J. Wall. 2001. Expression of myostatin pro-domain results in muscular transgenic mice. Mol. Reprod. Dev. 60, 51-61.
  38. Zhang, P., X. Chen, and M. Fan. 2007. Signaling mechanisms involved in disuse muscle atrophy. Med. Hypotheses 69, 310-321.