• Title/Summary/Keyword: Lipid Synthesis

Search Result 366, Processing Time 0.027 seconds

Effects of Ginseng Saponin and Its Related Materials on Aflatoxin Production by Aspergillus parasiticus NRRL2999 in semi-Synthetic Media (반합성 배지에서 Aspergillus parasiticus의 Aflatoxin생성에 미치는 인삼 Saponin과 그 관련물질의 영향)

  • 전홍기;박건영;조영배
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.288-294
    • /
    • 1986
  • The effects of ginseng saponin and its related materials on aflatoxin production by Aspergillus parasiticus NRRL2999 in yeast extract sucrose (YES) medium were studied. Maximal production of aflatoxins by the mold in the medium occurred after 9 days at $28^{\circ}C$. When various concentrations of ginseng saponin were added to the medium aflatoxin productions were significantly reduced (p<0.05) compared to the control after 9 days at $28^{\circ}C$. 0.05% of saponin in the medium greatly decreased aflatoxin synthesis, and no aflatoxins were synthesized by the mold in the medium contained 5.0% of saponin. When various concentrations of saponin diol and triol were added to the medium both ingibitory and sitimulatory effects on alfatoxin production were resulted. Saponin fraction numbers of 1, 2, 4, 5 and 6 decreased aflatoxin production, however the numbers of 3 and 7 stimulated the toxin production. 0.05% of adenosine, guanosine, caffeine and xanthosine in the media inhibited aflatoxin production (p<0.05), but adenine and cytosine increased the production. When 5.0% of saponin was added to the medium aflatoxins were not synthesized at all, but total lipid synthesis and mold growth were highly stimulated. Both the synthesis of total lipid and mold growth were reduced in case of aflatoxin synthesis stimulated.

  • PDF

Lower ω-6/ω-3 Polyunsaturated Fatty Acid Ratios Decrease Fat Deposition by Inhibiting Fat Synthesis in Gosling

  • Yu, Lihuai;Wang, Shunan;Ding, Luoyang;Liang, Xianghuan;Wang, Mengzhi;Dong, Li;Wang, Hongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1443-1450
    • /
    • 2016
  • The objective of the current study was to investigate the effects of dietary ${\omega}-6/{\omega}-3$ polyunsaturated fatty acid (PUFA) ratios on lipid metabolism in goslings. One hundred and sixty 21-day-old Yangzhou geese of similar weight were randomly divided into 4 groups. They were fed different PUFA-supplemented diets (the 4 diets had ${\omega}-6/{\omega}-3$ PUFA ratios of 12:1, 9:1, 6:1, or 3:1). The geese were slaughtered and samples of liver and muscle were collected at day 70. The activities and the gene expression of enzymes involved in lipid metabolism were measured. The results show that the activities of acetyl coenzyme A carboxylase (ACC), malic enzyme (ME), and fatty acid synthase (FAS) were lower (p<0.05), but the activities of hepatic lipase (HL) and lipoprotein lipase (LPL) were higher (p<0.05), in the liver and the muscle from the 3:1 and 6:1 groups compared with those in the 9:1 and 12:1 groups. Expression of the genes for FAS (p<0.01), ME (p<0.01) and ACC (p<0.05) were higher in the muscle of groups fed diets with higher ${\omega}-6/{\omega}-3$ PUFA ratios. Additionally, in situ hybridization tests showed that the expression intensities of the high density lipoprotein (HDL-R) gene in the 12:1 and 9:1 groups were significantly lower (p<0.01) than that of the 3:1 group in the muscle of goslings. In conclusion, diets containing lower ${\omega}-6/{\omega}-3$ PUFA ratios (3:1 or 6:1) could decrease fat deposition by inhibiting fat synthesis in goslings.

Effects of Agastachis Herba Extract and Lysimachiae Herba Extract on the Experimental Cellular Model of NFLDs Induced by Palmitic Acid (곽향과 금전초 추출물이 Palmitic acid로 유발된 비알코올성 지방간 세포 모델에 미치는 영향)

  • Lee, Hye-in;Kim, Young-kwang;Lim, Hyeon-chan;Lee, Da-eun;Kim, Eun-ji;Moon, Young-ho
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.3
    • /
    • pp.302-312
    • /
    • 2018
  • Objectives: This study was performed to investigate the effects of two herbal medicines, Agastachis Herba and Lysimachiae Herba, on a cellular model of non-alcoholic fatty liver diseases (NFLDs). Methods: HepG2 cells were treated with palmitic acid and with various concentrations of Agastachis Herba (AH) or Lysimachiae Herba (LH) extract in water. The lipotoxicity was assessed using EZ-cytox, and the lipoapoptosis was assessed using cell death detection ELISA. Intracellular lipids were measured by oil red O staining. The efficacy of AH and LH on sterol regulatory element-binding transcription factor-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) in HepG2 cells was measured by reverse transcription polymerase chain reaction (RT-PCR). Results: Both AH and LH extracts increased lipoapoptosis and decreased lipotoxicity and levels of SREBP-1c, ACC, and FAS (SREBP-1c, ACC, and FAS are factors in lipid synthesis). In the oil red O staining experiment, both extracts also reduced intracellular lipid accumulation; in this instance, LH's efficacy was superior to that of AH. Conclusions: According to the results, both AH and LH are likely to contribute to non-alcoholic fatty liver disease, as both interfere with lipid synthesis.

Enhancement of Lipid Production under Heterotrophic Conditions by Overexpression of an Endogenous bZIP Transcription Factor in Chlorella sp. HS2

  • Lee, Hansol;Shin, Won-Sub;Kim, Young Uk;Jeon, Seungjib;Kim, Minsik;Kang, Nam Kyu;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1597-1606
    • /
    • 2020
  • Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in Chlorella sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in Chlorella sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in Chlorella sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRT-PCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in Chlorella sp. HS2 under heterotrophic conditions.

The Effect of Woohwangcheongsim-won on Circulatory Disturbance in Diabetes (우황청심원이 당뇨병 Rat의 혈액순환장애에 미치는 영향)

  • 황성록;정승현;신길조;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.164-179
    • /
    • 2002
  • Object: Death rate due to hypertension, atherosclerosis, ischemic heart disease and cerebral infarction induced by Westernized diet and increased average life span is on the rise. Decrease in blood circulation, activation of thrombus generation and intravascular lipid accumulation, cited as the principal causes of the above mentioned diseases in recent studies, result in circulatory disturbance and blood vessel obstruction leading to ischemic cell death of heart, brain and peripheral vessels. Method: We investigated the biochemical changes in microvascular permeability, aggregation of platelet and the intravascular lipid accumulation in induced-diabetic rat using Streptozotocin. We also studied the effects of Woohwangcheongsirn-won after oral administration on blood circulation, platelet function and lipid metabolism. The results are as follows: I. Woohwangcheongsim-won increased blood circulation in microvessels. 2. Woohwangcheongsim-won increased the reduced erythrocyte deformability in diabetes. 3. Woohwangcheongsim-won induced the reduction of contents of 2, 3-DPG, but failed to affect the reduced contents of ATP in erythrocyte in diabetes. 4. Woohwangcheongsim-won reduced the activity of Ca/sup 2+/-ATPase in the membrane of erythrocyte. 5. Woohwangcheongsim-won reduced the platelet aggregation evoked by platelet agglutinin factor. 6. Woohwangcheongsim-won reduced the production of platelet-derived granules. 7. Woohwangcheongsim-won reduced the production of metabolites of arachidonic acid in diabetes, and also reduced the production of increased thromboxane B2. 8. Woohwangcheongsim-won reduced the synthesis of oxidized LDL-cholesterol. In conclusion, Woohwangcheongsim-won enhanced blood circulation in microvesseles, erythrocyte deformability and inhibited the increased platelet aggregation and the synthesis of oxidized LDL-cholesterol in diabetes. Therefore Woohwangcheongsim-won is believed to positively affect blood circulation (J Korean Oriental Med 2002;23(2):164-179)

  • PDF

Effects of prolonged photoperiod on growth performance, serum lipids and meat quality of Jinjiang cattle in winter

  • Yu, Yan;Qiu, Jingyun;Cao, Jincheng;Guo, Yingying;Bai, Hui;Wei, Shengjuan;Yan, Peishi
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1569-1578
    • /
    • 2021
  • Objective: This study was conducted to investigate the potential effects of prolonged photoperiod on the serum lipids, carcass traits, and meat quality of Jinjiang cattle during winter. Methods: Thirty-four Jinjiang bulls aged between 14 and 16 months were randomly assigned to two groups that were alternatively subjected to either natural daylight +4 h supplemental light (long photoperiod, LP) or natural daylight (natural photoperiod, NP) for 96 days. The potential effects on the levels of serum lipids, carcass traits, meat quality, and genes regulating lipid metabolism in the intramuscular fat (IMF) of the cattle were evaluated. Results: Jinjiang cattle kept under LP showed significant increase in both dry matter intake and backfat thickness. the serum glucose and the plasma leptin levels were significantly reduced, while that of melatonin and insulin were observed to be increased. The crude fat contents of biceps femoris muscle and longissimus dorsi muscle were higher in LP than in NP group. In longissimus dorsi muscle, the proportions of C17:0 and C18:0 were significantly higher but that of the C16:1 was found to be significantly lower in LP group. The relative mRNA expressions in IMF of longissimus dorsi muscle, the lipid synthesis genes (proliferator-activated receptor gamma, fatty acid-binding protein) and the fatty acid synthesis genes (acetyl-coa carboxylase, fatty acid synthetase, 1-acylglycerol-3-phosphate acyltransferase) were significantly up-regulated in LP group (p<0.05); whereas the hormone-sensitive lipase and stearoyl-CoA desaturase 1 were significantly down-regulated in LP than in NP group. Conclusion: Prolonged photoperiod significantly altered the growth performance, hormonal levels, gene expression and fat deposition in Jinjiang cattle. It suggested that the LP improved the fat deposition by regulating the levels of different hormones and genes related to lipid metabolism, thereby improving the fattening of Jinjiang cattle during winter.

Lipid Production Characteristics of the Basophilic Blue-Green Algae Arthrospira platensis Depending on pH for Alkaline Wastewater Treatment (알칼리성 폐수처리를 위한 호염기성 남조류 Arthrospira platensis의 pH에 따른 지질생성 특성)

  • Su-Hyeon Lee;Su-min Kwon;Sun-Jin Hwang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.433-438
    • /
    • 2023
  • This study investigated the growth and metabolic characteristics of Arthrospira platensis (A. platensis) according to pH, which has an alkaline optimal pH. The intake of inorganic carbon was expected to be the highest at the optimum pH 9, but it was different from the expectation, so the cause of the excessive intake of inorganic carbon at pH 7 was investigated. We tried to verify the triacylglycerol (TAG) synthesis metabolic mechanism because it was assumedthat the inorganic carbon intake of A. platensis according to pH is closely related to lipid production inside the cell. To verify this, the effects of pH on inorganic carbon intake were examined through lipid analysis inthe cell of A. platensis according to pH. As a result, in the case of the effect of inorganic carbon intake of A. platensis according to pH on TAG content, pH 9 and pH 11 showed no significant difference in TAG content, but at pH 7, it was two times higher compared to pH 9 and pH 11. It was assumed that the reason why A. platensis excessively consumed inorganic carbon at pH 7 was because itincreased the TAG content in proportion to the intake of inorganic carbon to protect cells from external pH stress. In addition, it is considered that the TAG content produced in proportion to the intake of inorganic carbon is because acetyl-CoA produced in the Calvin cycle is required for the synthesis of TAG.

Effects of Kisspeptin-10 on Lipid Metabolism in Cultured Chicken Hepatocytes

  • Wu, J.;Fu, W.;Huang, Y.;Ni, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1229-1236
    • /
    • 2012
  • Our previous studies showed that kisspeptin-10 (Kp-10) injected in vivo can markedly increase lipid anabolism in liver of quails. In order to investigate the direct effect of Kp-10 on lipid metabolism of hepatocytes in birds, cells were separated from embryos livers and cultured in vitro with 0, 100 and 1,000 nM Kp-10, respectively. The results showed that after 24 h treatment, cells viability was not affected by 100 nM Kp-10, but showed a mild decrease with 1,000 nM Kp-10 compared to the control cells. Based on the results of the cell viability, 100 nM dosage of Kp-10 was selected for the further study and analysis. Compared with control cells, total cholesterol (Tch) contents in 100 nM treated cells were increased by 51.23%, but did not reach statistical significance, while the level of triglyceride (TG), high density of lipoprotein-cholesterol (HDL-C) and low density of lipoprotein-cholesterol (LDL-C) were significantly increased. Real-time PCR results showed that ApoVLDL-II mRNA expression had a tendency to increase, genes including sterol regulatory element-binding protein-1 (SREBP-1), acetyl coenzyme A carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT1), 3-hydroxyl-3-methylglutaryl-coenzyme A reductases (HMGCR) and stearyl coenzyme A dehydrogenase-1 (SCD1) mRNA in hepatocytes were significantly down-regulated by 100 nM Kp-10. However, contrary to its gene expression, SREBP-1 protein expression was significantly up-regulated by 100 nM Kp-10. Some of the significant correlations in mRNA expression were found between genes encoding hepatic factors or enzymes involved in lipid metabolism in liver of birds. These results indicate that Kp-10 stimulates lipid synthesis directly in primary cultured hepatocytes of chickens.

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.

Effect of Green Tea Extract on Lipid Synthesis in Human Sebocyte Cell Line (녹차추출물이 인체 피지선세포주에서 지질 생성에 미치는 효과)

  • Park, Si-Jun;Jeon, Byoung-Kook;Kim, Dae-Sung;Lee, Ghang-Tai;Mun, Yeun-Ja;Lee, Kun-Kuk;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.608-613
    • /
    • 2011
  • The aqueous Green tea comes to be used with the Oriental medicine plant, it has the numerous health benefits, including antioxidant, anti-inflammatory, and anti- carcinogenic properties. Epidermal progenitor cells give rise to multiple skin lineages: hair follicle, sebaceous gland and the overlying interfollicular epidermis. Sebocytes are the cells of the sebaceous gland, which synthesize and accumulate lipid dropolets. In order to determine the effect of Green tea on lipid production, several experiments were performed in SZ95 cells (sebocytes). We found that Green tea increased lipid droplets compared with control in a dose-dependent manner. Human sebaceous glands produce sebum, a lipid mixture of squalene, wax esters, triglycerides, cholesterol esters, and free fatty acids that is secreted onto the skin. Therefore, to investigate the effects of Green tea on intracellular lipid levels, we treated SZ95 cells with Green tea, and then examined cholesterol and triglyceride levels. After treatment of the cells with Green tea, the cholesterol and triglyceride levels of SZ95 cells were increased significantly in a dose-dependent manner.