• Title/Summary/Keyword: Lipase hydrolysis

Search Result 117, Processing Time 0.021 seconds

Effect of Enzymatic Hydrolysis on Polylactic Acid Fabrics by Lipases from Different Origins

  • Lee, So-Hee;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.6
    • /
    • pp.653-662
    • /
    • 2012
  • This study measured the effect of general pre-treatment on PLA fabrics to confirm the benefits of enzymatic processing on PLA fabrics in the textile industry as well as evaluated the hydrolytic activities of three lipases. The effects of lipase hydrolysis were analyzed through moisture regain, dyeing ability, tensile strength, and surface morphology. As a result, PLA fibers were easily damaged by a low concentration of sodium hydroxide and a low treatment temperature. The optimal treatment conditions of Lipase from Candida cylindracea were pH 8.0, $40^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Candida rugosa were pH 7.2, $37^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Porcine pancreas were pH 8.0, $37^{\circ}C$, and 2,000 U. The moisture regain and dyeing ability of PLA fabrics increased and the tensile strength of PLA fabrics decreased. The results of surface morphology revealed that there were some cracks due to hydrolysis on the surface of the fiber.

Enantioselective Hydrolysis for the Precursor of Azole-containing Compounds using Acinetobacter sp. SY-01 Lipase and Increase of Enantioselectivity by the Removal of Reaction Products (Acinetobacter sp. SY-01 Lipase를 이용한 아졸계 화합물 전구체에 대한 광학선택적 가수분해 반응과 생성물 제거에 의한 광학선택성 증가)

  • 윤문영;신평균;정찬성;박정극
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Screening of a strain was carried out to produce an enantioselective lipase toward the precursor of ltraconazole as azole-containg compounds, which are well known as antifungal drug agents. An Acinetobacter sp. SY-01 strain which can selectively hydrolyze the racemic substrates was isolated and the racemic substrate was resolved to the S-ester in 95.6% enantiomeric excess after 74.8% hydrolysis. The optimum temperature and pH for the conversion were $50^{\circ}C$, pH 7.0. However, the temperature and pH had no effect on the enantiomeric excess. Addition of solvents decreased the conversion and slightly increased the enantiomeric excess. However, the kind of solvents had no effect on enantiomeric excess. The substrate concentration decrease enantiomeric excess and this is confirmed by the products generated from hydrolysis, and also enantiomeric excess could be increased by the removal of reaction products.

Detection and Determination of Lipase Activity

  • Lee, Seoung-Yong;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • Lipase (triacylglycerol hydrolase, EC 3.1.1.3) is able to catalyze the hydrolysis of ester bonds of triacylglycerols at the interface between aqueous phase and organic phase containing substrate. With the rapid development of lipid biotechnology, lipase-catalyzed hydrolysis of lipids has a great concern from the industrial point of view. Owing to the reversible nature of the lipase, the reactions are also applied for glyceride synthesis, interesterification and resolution of racemic mixtures into optically active alcohols or acids. For all applications of the lipases, a reliable method for the determination of enzyme activity is required. Precise quantitative determination of its activity is essential as the basis of research and development of the bioprocess involving the enzyme. This article reviews the existing literature on the detection and determination of lipase activity from microbial, mammalian and plant sources.

  • PDF

Beef Tallow Hydrolysis by Immobilized Lipase

  • Kim, Dong-Joon;Shin, Dong-Hoon;Hur, Byung-Ki;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.836-839
    • /
    • 2000
  • Beef tallow, which is an industrial lipid substrate, was hydrolyzed by lipase immobilized on a high-density polyethylene (HDPE) powder. Ethanol pre-washing process affected the immobilization efficiency. Half-life of storage of the HDPE at $4^{\circ}C$ was 150 days. And after 10 times of repeated use, more than 50% of initial activity remained. An apparent Michaelis constant ($K_m$) and maximum velocity ($V_{max}$) were 2.7M, and 1.4 mmol/min/l for immobilized lipase, and 0.5 M, and 1.9 mmol/min/l for soluble lipase, respectively.

  • PDF

Isolation, Analysis, and Expression of Lipase with Cephalosporin-C Deacetylation Activity from Staphylococcus sp.

  • Lee, Hyun-Woo;Ko, Jung-Youn;Kim, Woo-Jung;Byun, Si-Myung
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.274-277
    • /
    • 2001
  • Lipase of Staphylococcus sp. was purified from the culture supernatant, and its molecular mass estimated to be 44 kDa by SDS-PAGE. Its optimum temperature and pH for the hydrolysis of p-nitrophenyl substrates was $28^{\circ}C$ and pH 8.5, respectively The gene encoding the lipase was cloned in Escherichia coli in the $NH_2$-teminally truncated form by using the shotgun method, and sequenced. The mature enzyme had a 49-93% amino acid sequence homology with other staphylococcal lipases. This lipase was used for the hydrolysis of the 3-O-acetate of cephalosporin-C to give an intermediate, deacetylated cephalosporin-C that is useful for further chemical elaborations.

  • PDF

Mechanism of Enzymatic Degradation of Poly(butylene succinate)

  • Lee, Chan-Woo;Kimura, Yoshiharu;Chung, Jin-Do
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.651-658
    • /
    • 2008
  • Poly(butylene succiate) (PBS), poly(butylene succinate-co-L-lactate) (PBSL), and poly(butylene succinate-co-6-hydroxycaproate) (PBSCL) polymers were degraded by lipase $PS^{(R)}$, and the enzymatic degradation mechanism of PBS was analyzed in detail. The enzymatic degradation of PBS gave 4-hydroxybutyl succinate (4HBS) as the main product. An exo-type hydrolysis mechanism was proposed based on this observation. The terminal chain of PBS had conformational similarity to ordinary tri- and diglycerides and could be incorporated as a substrate in the active site of this lipase. The surface adsorption of the lipase was much larger on PBS and its copolymer films than on the other polyester films because the lipase adhered quite strongly to the polymer terminal through a specific adsorption mechanism. Kinetic analysis showed that the total number of surface adsorption points per unit area of PBSL and PBSCL copolymers was larger than that of the PBS homopolymer.

Hydrolysis of Oils by Using Immobilized Lipase Enzyme : A Review

  • Murty, V.Ramachanda;Bhat, Jayadev;Muniswaran, P.K.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.57-66
    • /
    • 2002
  • This review focuses on the use of immobilized lipase technology for the hydrolysis of oils. The importance of lipase catalyzed fat splitting process, the various immobilization procedures, kinetics, deactivation kinetics, New immobilized lipases for chiral resolution, reactor configurations, and process considerations are all reviewed and discussed.

Process Development of Concentration of n-3 PUFAs from Fish Oil by Means of Lipase (리파제의 아실 체인 특이성을 이용한 물고기 기름에서 n-3 다중불포화지방산의 농축공정개발)

  • 진영서;허병기
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.90-95
    • /
    • 1998
  • Experiments on the process development for the concentration of polyunsaturated fatty acid (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil by using acyl chain specificity of Candida cylindracea lipase were performed. Five kinds of oils were hydrolyzed with Candida cylindracea lipase. Among then, Candida cylindracea lipase just had low activity on the PUFAs-rich fish oil. After the hydrolysis of fish oil, free fatty acid was removed and fatty acid components of glyceride mixtures were analyzed. When the hydrolysis was about 70%, the DHA content in the glyceride mixture was about three times more than that in the original fish oil. The EPA and stearidonic acid contents in the glyceride mixtures, however, were similar to that of the original fish oil. In this work, these results showed that the concentration process of PUFAs by using the acyl chain specificity of Candida cylindreacea lipase was effective in producing glycerides that contained a high concentration of PUFAs in good yield.

  • PDF

Optimized Conditions for In Situ Immobilization of Lipase in Aldehyde-silica Packed Columns

  • Seo Woo Yong;Lee Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.465-470
    • /
    • 2004
  • Optimal conditions for the in situ immobilization of lipase in aldehyde-silica packed columns, via reductive amination, were investigated. A reactant mixture, containing lipase and sodium borohydride (NaCBH), was recirculated through an aldehyde-silica packed column, such that the covalent bonding of the lipase, via amination between the amine group of the enzyme and the aldehyde terminal of the silica, and the reduction of the resulting imine group by NaCBH, could occur inside the bed, in situ. Mobile phase conditions in the ranges of pH $7.0{\~}7.8$, temperatures between $22{\~}28^{circ}C$ and flow rates from $0.8{\~}1.5\;BV/min$ were found to be optimal for the in situ immobilization, which routinely resulted in an immobilization of more than 70 mg­lipase/g-silica. Also, the optimal ratio and concentration for feed reactants in the in situ immobilization: mass ratio [NaCBH]/[lipase] of 0.3, at NaCBH and lipase concentrations of 0.75 and 2.5 g/L, respectively, were found to display the best immobilization characteristics for concentrations of up to 80 mg-lipase/g-silica, which was more than a 2-fold increase in immobilization compared to that obtained by batch immobilization. For tributyrin hydrolysis, the in situ immobilized lipase displayed lower activity per unit mass of enzyme than the batch-immobilized or free lipase, while allowing more than a $45\%$ increase in lipase activity per unit mass of silica compared to batch immobilization, because the quantity of the immobilization on silica was aug­mented by the in situ immobilization methodology used in this study.

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.