• Title/Summary/Keyword: Link Bandwidth

Search Result 385, Processing Time 0.027 seconds

Bottleneck link bandwidth Measurement Algorithm for improving end-to-end transit delay in Grid network (그리드 네트워크에서 종단간 전송 지연 향상을 위한 bottleneck 링크 대역폭 측정 알고리즘)

  • Choi, Won-Seok;Ahn, Seong-Jin;Chung, Jin-Wook
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.923-928
    • /
    • 2003
  • This paper proposes a bottleneck link bandwidth measurement algorithm for reducing packet transmission delay within the grid network. There are two methods for measuring bottleneck link bandwidth:Packet Pair algorithm and Paced Probes algorithm. They measure bottleneck link bandwidth using the difference in arrival times of two paced probe packets of the same size traveling from the same source to destination. In addition, they reduce the influences of cross traffic by pacer packet. But there are some problems on these algorithms:it's not possible to know where bottleneck link occurred because they only focus on measuring the smallest link bandwidth along the path without considering bandwidth of every link on the path. So hop-by-hop based bottleneck link bandwidth measurement algorithm can be used for reducing packet transmission delay on grid network. Timestamp option was used on the paced probe packet for the link level measurement of bottleneck bandwidth. And the reducing of packet transmission delay was simulated by the solving a bottleneck link. The algorithm suggested in this paper can contribute to data transmission ensuring FTP and realtime QoS by detecting bandwidth and the location where bottleneck link occurred.

Estimating of Link Structure and Link Bandwidth.

  • Akharin, Khunkitti;Wisit, Limpattanasiri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1299-1303
    • /
    • 2005
  • Over the last decade the research of end-to-end behavior on computer network has grown by orders but it has few researching in hop-by-hop behavior. We think if we know hop-by-hop behavior it can make better understanding in network behavior. This paper represent ICMP time stamp request and time stamp reply as tool of network study for learning in hop-by-hop behavior to estimate link bandwidth and link structure. We describe our idea, experiment tools, experiment environment, result and analysis, and our discussion in our observative.

  • PDF

A New Fast P2P Video Transmission Method Applied in Asymmetrical Speed Channel Environment

  • Wang, Zhang;Zhang, Jixian;Li, Haitao;Liu, Jian
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.209-215
    • /
    • 2010
  • In an asymmetrical speed channel environment like asymmetric digital subscriber line, the up-link bandwidth is normally smaller than the down-link bandwidth, which will lead to extremely low utilization of down-link bandwidth when current P2P video transmission is applied. To overcome this, a new fast P2P video transmission method applied in an asymmetrical speed channel environment is proposed in this paper. On the basis of the many-to-one concept, the proposed method uses a new multipeer aggregation technique to enhance the utilization of down-link bandwidth. In addition, an adaptive peer assignment algorithm is also introduced in order to minimize the overall transmission time. Experimental results show that by using our proposed method, the utilization of down-link bandwidth is significantly improved, and the overall transmission time is greatly reduced.

Study on OSPF Routing Cost Functions for Wireless Environments (무선 환경을 고려한 OSPF 라우팅 비용함수 연구)

  • Shin, Dong Wook;Lee, Seung Hwan;Rhee, Seung Hyong;Lee, Hyung-Joo;Hoh, Mi-Jeong;Choi, Jeung-Won;Shin, Sang-Heon;Kim, Tae-Wan;Moon, Ho-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.829-840
    • /
    • 2012
  • Recently, in network communication environments, it is changing very fast from wired to wireless. The open shortest path firtst (OSPF), one of link state routing protocols, mainly used in wired networks, is the routing method to select optimal traffic path as identifying the link state of neighbor routers. The traditional OSPF cost functions performs with first fixed cost permanently, unless the router link is changed. However, in wireless networks, the performance of links show big difference by other environment factors. The bit error rate (BER), a parameter which can quite affect link state in wireless networks, is not considered in the traditional OSPF cost functions. Only a link bandwidth is considered in the traditional OSPF cost functions. In this paper, we verify the various parameters which can affect link performance, whether it is permissible to use as the parameter of proposed cost functions. To propose new cost functions, we use the effective bandwidth. This bandwidth is calculated by proposed formula using the BER of the network link and link bandwidth. As applied by the proposed triggering condition, the calculated effective bandwidth decrease the unstable of network by generating less link state update messages in wireless networks that frequently changes the link state. Simulation results show that the proposed cost functions significantly outperforms the traditional cost functions in wireless networks in terms of the services of VoIP and data transmission.

Bandwidth Redistribution Based Fairness Control Method for the IEEE 802.17 Resilient Packet Ring (IEEE 802.17 레질런트 패킷링을 위한 대역폭 재분배 기반 공정성 제어 방식)

  • Kim, Tae-Joon;Kim, Hwang-Rae
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.7
    • /
    • pp.844-853
    • /
    • 2006
  • The IEEE 802.17 Resilient Packet Ring (RPR) for future Local, Metropolitan, and Wide Area Networks was recently standardized, but it still suffer from delay jitter deterioration and even some bandwidth loss under unbalanced overload. In order to overcome these drawbacks, this paper proposes a bandwidth redistribution based fairness control method, compatible with the legacy one, in which each congested node measures the amount of available bandwidth of its bottleneck link resulted from regulating upstream nodes' shares of the link bandwidth, calculates optimal fair rate with the number of uptream nodes requiring more bandwidth, and then redistributes the available bandwidth to the upstream nodes by advertising the rate. The performance evaluation results show that the proposed method fairly redistributes 95% of the bottleneck link bandwidth with even only two redistributions.

  • PDF

Flow Holding Time based Advanced Hybrid QoS Routing Link State Update in QoS Routing

  • Cho, Kang Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.17-24
    • /
    • 2016
  • In this paper, we propose a AH LSU(Advanced Hybrid QoS Routing Link State Update) Algorithm that improves the performance of Hybrid LSU(Hybrid QoS Link State State Update) Algorithm with statistical information of flow holding time in network. AH LSU algorithm has had both advantages of LSU message control in periodic QoS routing LSU algorithm and QoS routing performance in adaptive LSU algorithm. It has the mechanism that calculate LSU message transmission priority using the flow of statistical request bandwidth and available bandwidth and include MLMR(Meaningless LSU Message Removal) mechanism. MLMR mechanism can remove the meaningless LSU message generating repeatedly in short time. We have evaluated the performance of the MLMR mechanism, the proposed algorithm and the existing algorithms on MCI simulation network. We use the performance metric as the QoS routing blocking rate and the mean update rate per link, it thus appears that we have verified the performance of this algorithm.

A New Routing Protocol in Wireless Ad-hoc Networks with Multiple Radios and Channels

  • Ko, Sung-Won;Cho, Jeong-Hwan;Hong, Kwon-Eui
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.26-40
    • /
    • 2010
  • We propose a new routing protocol, MCQosR, that is based on bandwidth estimation, admission control, and a routing metric, MCCR - suitable for wireless ad-hoc networks with multiple radios and channels. To use the full capacity of a wireless link, we assume a node with multiple radios for full duplex operation, and a radio using multiple channels to exclude route-intra interference. This makes it possible to use the capacity of a wireless link. Then, to provide bandwidth and delay guarantee, we have a radio with a fixed channel for layer-3 data reception at each node, used to estimate the available bandwidth and expected delay of a wireless link. Based on the estimate of available bandwidth and delay, we apply the call admission control to a new call requiring bandwidth and delay guarantee. New calls with traffic that will overflow link or network capacity are rejected so the accepted calls can use the required bandwidth and delay. Finally, we propose a routing metric, MCCR, which considers the channel contentions and collisions of a wireless link operating in CSMA/CA. MCCR is useful for finding a route with less traffic and distributing traffic over the network to prevent network congestion as much as possible. The simulation of the MCQosR protocol and the MCCR metric shows traffic is distributed and guaranteed service is provided for accepted calls.

Satellite Link Simulator Development in 100 MHz Bandwidth to Simulate Satellite Communication Environment in the Geostationary Orbit (정지궤도 위성통신 환경모의를 위한 100 MHz 대역폭의 위성링크 시뮬레이터 개발)

  • Lee, Sung-Jae;Kim, Yong-Sun;Han, Tae-Kyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.842-849
    • /
    • 2011
  • The transponder simulator designed to simulate the transponder of military satellite communication systems in the geostationary orbit is required to have time delay function, because of 250 ms delay time, when a radio wave transmits the distance of 36,000 km in free space. But, it is very difficult to develop 250 ms time delay device in the transponder simulator of 100 MHz bandwidth, due to unstable operation of FPGA, loss of memory data for the high speed rate signal processing. Up to date, bandwidth of the time delay device is limited to 45 MHz bandwidth. To solve this problem, we propose the new time delay techniques up to 100 MHz bandwidth without data loss. Proposed techniques are the low speed down scaling and high speed up scaling methods to read and write the external memory, and the matrix structure design of FPGA memory to treat data as high speed rate. We developed the satellite link simulator in 100 MHz bandwidth using the proposed new time delay techniques, implemented to the transponder simulator and verified the function of 265 ms time delay device in 100 MHz bandwidth.

A Link State Update Algorithm based on a Statistical Threshold for Guarantee of Bandwidth (대역폭 보장을 위한 통계적 임계값 기반의 링크 상태 갱신 알고리즘)

  • Lee, Jin-Ju;Chung, Min-Young;Lee, Tae-Jin;Choo, Hyun-Seung
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.395-401
    • /
    • 2008
  • In order to determine path(s) satisfied with bandwidth-guaranteed in the Internet, routers should have information on network topology and link state. The information is stored in Link State Database (LSDB) located in each router and managed. If link states information is changed, routers inform their neighbor of link state information changed by sending Link State Update (LSU) messages. However, there is trade-off between reflection of actual link state information on LSDB and cost of sending LSU messages. To find a bandwidth-guaranteed path effectively, it is important to decide whether LSU messages are sent or not for the change of link sate. In this paper, we propose a threshold-based LSU algorithm using statistic to effectively decide for sending LSU messages and evaluates its performance by intensive simulations. Simulation results show that the performance of proposed scheme is superior to the existing LSU schemes.

An Efficient Throughput Improvement through Bandwidth Awareness in Cognitive Radio Networks

  • Le, Tung Thanh;Kim, Dong-Seong
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.146-154
    • /
    • 2014
  • This paper proposes a bandwidth-aware localized-routing algorithm that is capable of sensing the available spectrum bands within a two-hop neighboring for choosing the highly opportunistic routes. A mixed-integer linear programming (MILP) is utilized to formulate the optimization problem. Then, the proposed algorithm is used to determine the maximum bandwidth possible of link pairs via a bandwidth approximation process of relaxed variables. Thereby, the proposed algorithm can allow selected routes corresponding to maximum bandwidth possible between cognitive radio (CR) users through link pairs in cognitive radio networks. By comparing the solution values to previous works, simulation results demonstrate that the proposed algorithm can offer a closed-optimal solution for routing performance in cognitive radio networks. The contribution of this paper is achieved through approximately 50% throughput utilized in the network.