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An Efficient Throughput Improvement through
Bandwidth Awareness in Cognitive Radio Networks

Tung Thanh Le and Dong-Seong Kim

Abstract: This paper proposes a bandwidth-aware localized-
routing algorithm that is capable of sensing the available spectrum
bands within a two-hop neighboring for choosing the highly op-
portunistic routes. A mixed-integer linear programming (MILP) is
utilized to formulate the optimization problem. Then, the proposed
algorithm is used to determine the maximum bandwidth possible of
link pairs via a bandwidth approximation process of relaxedvari-
ables. Thereby, the proposed algorithm can allow selected routes
corresponding to maximum bandwidth possible between cognitive
radio (CR) users through link pairs in cognitive radio networks. By
comparing the solution values to previous works, simulation re-
sults demonstrate that the proposed algorithm can offer a closed-
optimal solution for routing performance in cognitive radi o net-
works. The contribution of this paper is achieved through approx-
imately 50% throughput utilized in the network.

Index Terms: Bandwidth-aware, cognitive radio networks, oppor-
tunistic localized-routing, uncertain behavior primary services.

I. INTRODUCTION

Cognitive radio (CR) is a recent and promising development
in wireless communications technology [1]–[4]. The tradition of
fixed spectrum sharing in licensed communication networks re-
sults in inefficient spectrum utilization [5]. Thus, CR is widely
considered to resolve the scarcity of spectrum bands and to meet
the burgeoning requirements of wireless services [6] by employ-
ing opportunistic spectrum sharing, which allows CR users to
make efficient use of spectrum bands throughout the network
[7]–[10].
One of the key challenges in cognitive radio networks (CRNs)

is that how to opportunistically utilize the unoccupied bands in
order to effectively exploit them in such networks. In addition,
how to select the appropriate routes for assigning resources that
can be efficiently utilized since the opportunistic spectrum, that
we expect to utilize, varies over time and space in terms of the
uncertain behavior of primary services. Therefore, the integra-
tion of spectrum awareness and route optimization is the key
challenge in facing with effectively spectrum utilizationin such
networks [11]–[19].
In this paper, we propose a bandwidth-aware opportunis-

tic localized-routing algorithm for CRNs. When the spectrum-

Manuscript received September 2, 2013.
This research was financially supported by National Research Foundation of

Korea (NRF) through the Human Resource Training Project forRegional Inno-
vation 2013 and Basic Science Research Program (No. 2011-0025409).
Tung Thanh Le is with the Center for Advanced Computer Studies, University

of Louisiana at Lafayette, LA 70504, USA, email: ttl8614@louisiana.edu.
Dong-Seong Kim is with the School of Electronic Engineering, Kumoh Na-

tional Institute of Technology, Gumi, Gyeongbuk 730-701, South Korea, email:
dskim@kumoh.ac.kr.
Digital object identifier 10.1109/JCN.2014.000025

ON

OFF

Sensing 

sampling

TOFF T

T

Renewal

eriod Primary ser

Renewal

eriod

Renewal

eriod

Fig. 1. Description of the ON-OFF state in a primary user’s channel.

aware opportunistic routing is aware of the entire network,it
requires a high computation in terms of the exponential vari-
ables which correspond to the dynamically network conditions.
Therefore, to meet the practical demands, bandwidth awareness
based on localized routing is addressed to manage its resource
within a two-hop neighboring routing for optimal routes. Tothis
end, we look for the closed-optimal solution in localized routing
through the minimization of bandwidth-utilized of link pairs in
the network.
The proposed algorithm is based on the bandwidth approxi-

mation process (BAP) and the branch-and-bound (B&B) search
algorithms. After solving the linear programming (LP) relax-
ation from the problem formulation in Section IV to determine
the lower bound (LB), infeasible solutions have to be sortedin
order to reduce the computational time of the CR network. The
BAP algorithm filters the approximation solutions (upper bound
solutions) that satisfy the condition which is within the vicinity
of [LB, (1+ε)LB]. Hence, the results can be either feasible or
infeasible solutions. If a feasible solution is found, it iscalled
a potential optimal solution. Otherwise, infeasible solutions are
decomposed into sub-problems through the B&B algorithm to
search for a feasible solution. The procedure is iterative until an
optimal solution is found. The proposed algorithm can utilize
the infeasible solutions that are still significant to be decom-
posed via B&B algorithm for finding new potential optimal so-
lutions. Then, the proposed algorithm compares among a set of
potential optimal solutions to choose the maximum value possi-
ble, and it is called an optimal solution. Simulation results show
that solutions achieved through the use of the proposed algo-
rithm.
The rest of this paper is organized as follows. Related works

are discussed about the existing works in Section II. The sys-
tem model and the problem formulation are issued in Section
III and IV, respectively. The proposed algorithm shows how to
solve the problem in Section V. Finally, simulation resultsand
the conclusion are given in Section VI and VII, respectively.
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II. RELATED WORKS

In this section, we investigate previousworks involvingmulti-
hop routing in CRNs. This section is organized as follows. First,
we review work on spectrum-aware routing in CRNs. We then
review the work on bandwidth-aware routing in such networks.
Although bandwidth-aware routing has been studied for multi-
hop routing in CRNs [16]–[22], it leads to network routing
overheads and as such is not applicable to real networks. To
the best of our knowledge, no studies have been conducted on
bandwidth-aware localized routing for CRNs to reduce the com-
putational complexity of such networks.
The papers [16] and [20] study the modeling of spectrum

sharing and sub-band division, scheduling and interference con-
straints, and flow routing for multi-hop routing in CRNs. The
authors in [20] propose a near-optimal algorithm to solve the
mixed-integer nonlinear programming (MINLP) problem for
obtaining a feasible solution, but the authors do not consider
how to convert a non-linear program to a linear program in their
paper. The authors in [16] develop a polynomial-time algorithm
to offer highly competitive solutions. They then compare the
values to a lower bound obtained from relaxing the MILP prob-
lem, to find a solution closer to the optimum.
In other related work, the authors in [21] and [23] propose

the same approach with a different model, by considering the
joint routing and the frequency scheduling issue in multi-hop
CRNs limited by an uncertain spectrum supply. A pair of pa-
rameters (α, β) is utilized to solve the optimization problem by
obtaining a LB and applying the threshold-based coarse-grained
fixing algorithm to determine a feasible solution. Thereby,a
near-optimal solution to the NP-hard problem is found that min-
imizes the required network-wide spectrum resource for CR
users. In [24], spectrum clouds under multiple cross-layercon-
straints in multi-hopCRNs are studied through the proposedser-
vice provider, called secondary service provider (SSP), tohar-
vest and utilize the available spectrum bands. Through a heuris-
tic relax-and-fix algorithm, feasible solutions can be determined
for the optimization problem by relaxing the integer variables.
However, the algorithm does not use an iterative approach to
find a new feasible solution from infeasible solutions. A new
upper bound (UB)1 for the optimization problem could prob-
ably be found if those values are still significant for findinga
feasible solution.
In [6], the authors propose an aggregate throughput and ro-

bust route set that are determined by rate-based selection strate-
gies, corresponding to links’ throughput, which is maximized.
They also propose a polynomial-time algorithm for solving the
problem to achieve a near-optimal solution for multi-hopCRNs.
However, this paper does not describe how to choose the ap-
propriate routes in the robust route set when considering node
interference for multi-hop routing in CRNs.

III. SYSTEM MODEL

To avoid interference between transmission and reception
among nodes in the network, all have to listen to their surround-

1A new upper bound could probably be closer to LB than the previous upper
bound.

Fig. 2. Interference range between nodes in the network.

ing environment when they want to transmit. Hence, this Sec-
tion is organized as including the channel-state modeling,inter-
ference modeling, and links constraints, for constructingcon-
straints and formula in the following section.

A. Channel-State Modeling

As illustrated in Fig. 2, we can see that nodes A and C can
simultaneously send data to nodes F and K, respectively, on the
same bandh, but in different sub-bands. However, this scene
will be interfered by their mutual interference ranges if they
had not listened for transmission during the period of timeTON

and TOFF as illustrated in Fig. 1, thus, among nodes A and
C that could probably be interfered by using the same band
utilization. In addition, each node in the network uses spec-
trum sensing techniques to obtain the available spectrum bands
through the medium access control layer as discussed in [20]
and [25]. In particular, the secondary user senses channelsvia
cooperative sensing and reporting channels [9], and adjustits ac-
cessible parameters corresponding to the channel-utilized of pri-
mary users. Once the secondary user detects the primary user’s
inquiry on its current band in use, the secondary user ceasesits
transmission for releasing that band in use to the primary user,
and start to sense surrounding channels and wait for the nextop-
portunity to transmit [7], [12], [26]–[27]. Therefore, we model
the network that each node can listen to available bandwidths be-
fore transmission. The outcomes of sensing are binary random
sequence for each channel with the periodic sensing in orderto
obtain the detection quality. For instance, the IEEE 802.22stan-
dard has the small sensing time which is less than1 ms/channel
for fast sensing with energy detection [28]–[29].
Note that the primary users have higher priority over the sec-

ondary users. The duration of idle period is the time interval
beginning as the channel becomes idle with the last packet sent
until the next first packet arrival. The duration of busy period
is the time interval beginning at the channel becomes busy with
the first packet arrival until the last packet sent. There aresev-
eral assumptions, including (1) the secondary user choosesone
channel corresponding to a sub-channel at one time and (2) the
primary users’ arrival process is Poisson process, the arbitration
is on the service time distribution with many scenarios suchas
multimedia traffic, voice traffic [27]. The system can be mod-
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eled as a M/G/1 queue2 with multiple inputs. We assume that
the duration of busy period of thenth channel is independent
and identically distributed (i.i.d), and its idle period distribution
function of thenth channel is exponential distribution, and then
can be given with the probability density function (pdf) as fol-
lows:

fi(t) = λne
−λnt (1)

where t≥ 0; λn > 0; i = 1,· · · , N; i denotes the duration of the
ith state period time of thenth channel.
In the scope of this paper, we consider the throughput of link

pairs that relies on the unknown behavior of the primary net-
work since the secondary user does not know the definition of
the time slot (busy and idle periods) in the primary channel [30].
The OFF state means the available spectrum hole which can be
utilized by secondary users (SUs), while the ON state is be-
ing occupied by primary users (PUs), as illustrated in Fig. 1.
We model two random variablesTON andTOFF, which are the
length of the ON state and OFF state, respectively. Depending
on the different types of primary services,TON andTOFF are
satisfied different distributions. In this paper, we denotefON(t)
andfOFF(t) which can be given as:

TON ∼ fON(t) =
1

λON
e
− t

λON , (2)

TOFF ∼ fOFF(t) =
1

λOFF
e
− t

λOFF . (3)

According to the expected lengths of the ON and OFF states
λON andλOFF, these parameters can be estimated by a max-
imum likelihood estimator [29]. The ON-OFF behavior of the
primary service is a renewal process, which is a combinationbe-
tween two Poisson distributions [30]–[31]. Thus, the renewal in-
terval isTRI = TON + TOFF, and the distribution ofTRI, which
is denoted byfRI(t), is given as:

TRI ∼ fRI(t) = fON(t) ∗ fOFF(t) (4)

where "∗" means the convolution operation.
Then we determine the maximum bandwidth possible for op-

portunistic routing that is described through the maximum link
capacity in terms ofTOFF andTON of primary services as fol-
lows:

Cij
hk
max =

E[TON]

E[TON] + E[TOFF]
× Cij

hk = Pb× Cij
hk (5)

whereCij
hk
max is the maximum bandwidth possible of link pairs

depending onTOFF andTON; E[TON] andE[TOFF] are the
mean expectation ofTON andTOFF, respectively;Cij

hk is the
available link capacity from nodei to j, which will be defined
in (15); andPb is the fraction of time which the primary user is
busy.

2M/G/1 queue means that the memoryless (M) is for poisson arrival process
with the intensityλ, general (G) is for general holding time distribution with the
meanS=1/µ, and1 is for a single server with loadρ = λS, whereρ < 1 is in
a stable queue.

Fig. 3. An example of maximizing the minimum sets of capacities in the
network.

B. Interference Modeling

As in Fig. 2, we can see that if node H needs a certain band-
width for forwarding, it listens to the spectrum sensing infor-
mation from nodes A, B, C, and K, then determines the mini-
mum bandwidth-utilized on link pairs{lHC, lCK}, {lHC, lCB},
and{lHC, lCA}. We can therefore determine a set of minimum
bandwidth between link pairs and then decide the maximum in
such a set. Hence, we formulate the optimal capacity for routing
at node H as follows:

lH = max{min{lHC , lCK};min{lHC , lCB};min{lHC , lCA}},
(6)

wherelHC, lCK, lCB, andlCA are the available capacity on
links HC, CK, CB, and CA, respectively.lH is the maximum
bandwidth possible on the set of minimum bandwidth of link
pairs that have a source routing from node H.
Based on the issuesmentionedabove, we describe an example

as follows. In Fig. 3, supposing that node A wants to make a de-
cision for routing to node D. It then has two optional links, link
pairs (lAC; lCD) and (lAB; lBD). These link pairs have capacities
of (40; 70) and (50; 30), respectively. First, node A minimizes
those link pairs, then it gets the minimum capacity of40 Mbps
for the first link pairs and30 Mbps for the second one. Then,
it maximizes those minimum link pairs, thereby, it can obtain
the maximum throughput possible of40 Mbps. Thus, node A
will choose the link pairs (lAC; lCD) for routing since these link
pairs, by avoiding the communication bottleneck, make use of
the maximum throughput possible for routing.
Note that (5) and (6) are introduced to show briefly the idea

of this paper. While (6) will be obtained by solving problems
mentioned in Sections IV and V, (5) is defined to evaluate the
maximum bandwidth possible for opportunistic routing based
on various behaviors of primary services.
From the foregoing, we denoteS as the set of available bands

among all nodes in the network andSi ⊆ S is the set of available
bands of nodei ∈ A. Note that nodej ∈ A hasSj 6= Si. In
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Table 1. System model Notations.

Symbol Definition
A Set of nodes in the network
S Set of available bands among all

nodes in the network
Si Set of available bands at nodei in

the network
Wh Bandwidth of bandh ∈ S

Kh Band h is divided into sub-bands
with unequal bandwidths

Fhk Bandwidth fraction for a sub-band
k in bandh

Ri
T Transmission range of nodei

Ri
I Interference range of nodei

Ti
h Set of available nodes that are using

bandh and within the transmission
range of nodei

Ij
h Set of nodes which can interfere at

nodej on bandh
PST Power spectral density of transmis-

sion range
PSI Power spectral density of interfer-

ence range
zij

hk Switching mode that sub-bandk in
bandh can either be utilized or not
between nodei andj

L Set of available links in the
localized-routing area

addition, letWh be the bandwidth of bandh ∈ S, and bandh
can be divided intoKh sub-bands with unequal bandwidths.
In order to assign sub-bands at a node for transceiver without

interference between nodes, we suppose that the schedulingof
bands and sub-bands must be guaranteed. Hence, assume that
bandh can be used in nodesi andj if they satisfy the following
condition:

zhkij =







1, if i sends data toj on sub-bandk∈h;

0, otherwise.
(7)

Note that bandh ∈ Sij , whereSij = Si ∩ Sj , which means
that bandh is available at nodei andj. Nodei ∈ A and it uses
sub-bandk in bandh, within its transmission range, which gives
us:

T h
i = {j : j 6= i, h ∈ Sj , dij ≤ RT

i } (8)

whereT h
i is the set of nodes that can use the available bandh

within the transmission range of nodei, RT
i ; dij is the distance

between nodei andj.
We note that nodei cannot transmit to multiple nodes simul-

taneously on the same sub-bands, since it will encounter a bot-
tleneck phenomenon in the communication links. Therefore,we
can make a constraint as follows:

zhkij +
∑

p∈Th
j

zhkjp ≤ 1. (9)

According to constraint (9), ifzhkij is equal to 1, then
∑

p∈Th
j
zhkjp must be0, then nodej cannot use sub-bandk for

transmission. Otherwise, ifzhkij is equal to0, then
∑

p∈Th
j
zhkjp

≤ 1, and nodej can transmit to nodep on sub-bandk in band
h, but only if nodep ∈ T h

j .
Scheduling constraints can also be considered. It is clear that

if nodei uses sub-bandk in bandh for transmission to nodej,
then any node that can interfere at nodej will be restricted from
using this sub-band. In order to build this constraint, letIhj be
the set of nodes that can interfere at nodej on sub-bandk in
bandh, giving us:

Ihj = {p : p 6= j, h ∈ Sp, dpj ≤ RI
j}. (10)

Note thatRT andRI have a mutual relation with the power
spectral density(PS) of nodes in the network. WhenPST >

PSI , it meansRT < RI as mentioned in [20]. Then, we can
formulate:

zhkij +
∑

q∈Th
p

zhkqp ≤ 1 (11)

wherep ∈ Ihj andp 6= i. If zhkij = 0, the interference of the two
nodes at node j but apart from each other can use the same sub-
bandk in bandh for their transmission3. As illustrated in Fig. 2,
when nodeA uses sub-bandk in bandh for transmission to node
B, other nodes cannot use this sub-band, i.e., nodes C, D, E, F,
and G cannot use it for their transmission. When node A does
not use this sub-band for transmission to nodeB, all surrounding
nodes B, C, D, E, F, G can use sub-bandk for transmission. In
particular, it can be seen that while node C can use this sub-
band for transmission to either node H or node K, node D can
use it for transmission to either node G or node E. That means
both nodes C and D can use the sub-bandk in bandh at the
same time without interference. Therefore, Fig. 2 illustrates an
example that it adheres to the above constraints (10) and (11).

C. Links Constraints

When a source node transmits data to a destination node, it
may need to relay a number of hops in the intermediate nodes to
reach the destination node. However, how to select the appro-
priate routes for routing that do not exceed the link capacity, is
the key point, and therefore, managing the transmission rates in
each radio link is needed to prevent the exceeding link capacity.
Moreover, when nodei is transmitting to nodej on sub-band
k in bandh, their neighboring nodes4 have to avoid using sub-
bandk in bandh for transmission. At the network level, we
denotelij as the link data rate from nodei to nodej, wherelij
∈ L and belongs to the set of available nodes that are using band
h and are within the transmission range of nodei, T h

i .
Note that if nodei is a source node or destination node of link

l, the rate of nodei is defined asrsrc(l) or rdst(l), respectively.

3Note that the interference range of a node is twice times of its communication
range.

4The neighboring nodes are those within the transmission range of nodesi
and/orj.
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Hence, we have

∑

j∈Th
i

lij(l) = rsrc(l), (12)

∑

p∈Th
i

lpi(l) = rdst(l). (13)

Then, we formulate the constraint for two-hop routing which
is mentioned as a localized-routing as follows:

∑

j∈Th
i

∑

i6=j

lij(l) =
∑

p∈Th
i

∑

i∈rsrc(l)

∑

p/∈{rdst(l)|i}

lip(l)

+
∑

j∈Th
i

∑

j∈rdst(l)

∑

p/∈{rsrc(l)|j}

lpj(l).

(14)

Note that nodep in (14) plays a role as an intermediate node
in the proposed model.
This model differs from that of [20], where the authors aim

to make the complexity of links throughout the entire network.
Thus, it is generally impractical in real networks. However, in
this paper, we suppose a two-hop neighboring that is applicable
to the network, in which condition (14) is satisfied.
In addition, each link data rate cannot exceed the capacity of

the link. Therefore, the capacity of linklij via sub-bandk in
bandh can be described as [32]:

Chk
ij = zhkij × Fhk ×Wh × log2(1 +

P
σ
) (15)

whereP = gij×PS; gij is the power propagation gain;PS is
the power spectral density of a CR node; andσ is the Gaussian
noise density. In addition, we assume that all CR nodes have
the samePS for transmission. Note that these parameters have
been mentioned in [20], and therefore will not be elaboratedin
this paper.
From (14) and (15), we have

∑

l∈L

∑

i/∈rdst(l)

∑

j /∈rsrc(l)

lij(l) ≤
∑

h∈Sij

k=Kh
∑

k=1

Chk
ij . (16)

IV. PROBLEM FORMULATION

In a multi-hopCR network, the spectrum bands that are avail-
able at one node could be utilized by another node in the net-
work. Moreover, a given set of available frequency bands at
a particular node that is completely different from the setsof
other nodes in the CRN. Hence, the large diversity of the setsof
available bands needs to be allocated into sub-bands for utiliz-
ing such bands more flexibly in various network conditions.
Mathematically, we formulate the optimization problem

based on the minimization of bandwidth-utilized in the net-

work. Thus, we have

min
∑

i∈A

∑

h∈Sij

∑

j∈Th
i

k=Kh
∑

k=1

Fhk ×Wh × zhkij , (17)

s.t. zhkij +
∑

q∈Th
p

∑

p∈Ih
j

∑

p6=i

∑

i∈A

∑

h∈Sij

zhkqp ≤ 1, (18)

∑

l∈L

∑

i/∈rdst(l)

∑

j /∈rsrc(l)

lij(l) ≤
∑

h∈Sij

k=Kh
∑

k=1

Chk
ij . (19)

The mathematical formulation of the optimization problem
given by (17), (18), and (19) contains binary variableszhkij . Note
thatFhk can be a minimum as0 and maximum as1. There-
fore, it is possible to linearize the optimization problem as in the
mathematical formulation Section from [33] by representing a
new set of continuous variablesDhk

ij ∈ [0, 1], which replace the
termszhkij ×Fhk in (17). Note thatDhk

ij = zhkij ×Fhk. Then, vari-
ablesDhk

ij have to satisfy the following linearization constraints:

Dhk
ij ≤ zhkij , (20)

Dhk
ij ≤ Fhk, (21)

Dhk
ij ≥ zhkij + Fhk − 1. (22)

To sum up, the problem is to minimize in (17), subject to
constraints (7), (9), (10), (11), (12), (14), (16), (20), (21), and
(22), whereWh, P, σ, rsrc(l), andrdst(l) are constants, and the
optimization variables arezhkij , lij(l). Consequently, we have
the mixed-integer linear programming (MILP) formulation in
terms of an NP-hard problem as follows:

min
∑

i∈A

∑

h∈Sij

∑

j∈Th
i

k=Kh
∑

k=1

Wh ×Dhk
ij , (23)

s.t. (18), (19), (20), (21), and(22). (24)

V. BARCON ALGORITHM

The BARCON algorithm is based on the bandwidth approxi-
mation process (BAP) and branch-and-bound (B&B) algorithm.
After solving LP relaxation from conditions (23) and (24) in
Section IV in order to determine the LB, infeasible solutions
need to be sorted to reduce the computational complexity of the
network. To this end, the BAP algorithm filters the approxima-
tion solutions5 that satisfy the condition in which they are within
the sorting range of the vicinity of [LB, (1+ε)LB] in terms of the
LB6. If a feasible solution is found, it is called a potential opti-
mal solution, and infeasible solutions are continuously decom-
posed into sub-problems using the B&B algorithm for search-
ing a new feasible solution if infeasible solutions are significant
[34]. The procedure iterates until an optimal solution is found
after comparing to maximize the set of solutions as illustrated in
Fig. 4.

5Approximation solutions are potential optimal solutions as well as potential
upper bound solutions.

6Note thatε is the tolerant accuracy within the range of0 ≤ ε ≪ 1.
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UB1LB UB2UB3

Sorting range 3

Sorting range 2

Sorting range 1

UBn

...

Sorting range n

Fig. 4. Iterative search for finding new UB solutions until infeasible solu-
tions cannot be decomposed by the branch-and-bound algorithm.

The operation of the BARCON algorithm is based on the it-
erative steps as follows:
• First step: A LB solution is obtained by solving LP relaxation
in polynomial-time. However, the solutions can be infeasible
since they are fractional. The BAP algorithm is applied to
determine the UB solutions that are potentially optimal solu-
tions.

• Second step:The condition of [LB,(1+ε)LB] is utilized to
sort the solutions that do not satisfy the condition. Hence,the
set of satisfied solutions are obtained via the condition and
then, the minimum sets of such solutions are maximized to
select the optimal solution. If no feasible solution is found,
the procedure turns to the third step, otherwise, it turns tothe
fourth step. Note that if infeasible solutions are still signifi-
cant, these solutions are passed to the third step.

• Third step: If there is no feasible solution after the second
step, and infeasible solutions are still significant, the B&B
algorithm is used to decompose the infeasible solutions into
sub-problems for the next iteration loops until an optimal so-
lution is found.

• Fourth step: When a set of potential optimal solutions is ob-
tained, those solutions are maximized to find optimal solu-
tions, as described in algorithm 1.
According to the discussion as above, we denote thatLBi and

UBi are the LB and UB of problemi, respectively. In terms of
LBi andUBi, the minimum LB and UB can be determined as
follows.

LBmin = min
i∈SP

{LBi} , (25)

UBmin = min
i∈SP

{UBi} (26)

whereSP is the set of problems. Note that the purpose of
(25) and (26) is to shorten the computational time by obtain-
ing (1 + ε) optimal solutions. A problem can be removed from
the set of problems if it satisfies

(1 + ε)LBi ≥ UBi. (27)

The current UB solution cannot be removed if the minimum
UB solutions are not better than the current optimal solution, as
formulated in constraint (27). Otherwise, the current UB solu-
tion will be replaced by the minimum UB solution, which is the
(1 + ε) optimal solution, as the latest optimal solution as illus-
trated in Fig. 4.

Algorithm 1 The BARCON algorithm

1: Initialize the procedureby relaxing all binary variablesDhk
ij

∈ [0, 1]. (This step will relax MILP to LP relaxation).
2: Solvethe LP relaxation to determine the LB.
3: With the LB determined by solving the LP relaxation, the

BAP is applied to determine the UB with satisfying the con-
dition (LB ≤ UB ≤ (1 + ε)LB).

4: if Solutions obtained satisfy the BAP conditionthen
5: Compare to previous potential optimal solutions to

select the optimal solutions (maximum bandwidth
possible) in the sets.

6: Step toLine 11.
7: else
8: Search for finding feasible solutions by B&B search

algorithm to decompose infeasible solutions to
sub-problems.

9: Step toLine 2.
10: end if
11: Based on all optimal solutions, solve the optimization prob-

lem and establish flows routing to the network.

VI. SIMULATION PERFORMANCE

In this section, we describe simulations performed using
MATLAB under network scenarios to verify the effectivenessof
the proposed algorithm through the contribution of nearly 50%
throughput utilized, and thereby improving load-balance in the
network. First, we demonstrate bandwidth-aware performance
through the efficiency of maximum bandwidth possible on link
pairs throughout the network topology. The tolerance accuracy
ε is evaluated by considering the uncertain behavior of primary
users. Therefore, simulation results show that the algorithm can
be able to adapt to different scenarios with reliability andscala-
bility in the network.

A. Bandwidth-aware Performance

Initially, a network topology is deployed with 100 nodes dis-
tributed randomly over the area of 1,000×1,000 m2. The trans-
mission range of the nodes is 100 meters for CR networks such
as, for example, wireless microphones with small transmission
ranges as mentioned in [35]. In addition, random bandwidth
values are uniformly distributed in the interval of{0, 35}Mbps.
The tolerance accuracyε is set at 5%. The bandwidth-utilized
by CR users is considered by the busy-idle timeTON andTOFF.
In fact,TON andTOFF are random variables depending on the
primary users [30]. Moreover,TON andTOFF are independent
and exponential distributions withλON andλOFF which are the
expected lengths of ON and OFF states corresponding toTON

andTOFF, respectively. Note thatTON andTOFF are obtained
in the ceasing process, we can then evaluate the throughput with
the different behaviors ofTON andTOFF from primary services.
Figs. 6(a), 6(b), and 6(c) illustrate average throughputs corre-

sponding to network topologies Figs. 5(a), 5(b), and 5(c), re-
spectively. Although network topologies have the same size
1,000×1,000m2 and number of nodes, the nodes are distributed
randomly and the bandwidth-utilized on the network relies on
the expected lengthsλON andλOFF. In this paper, we simu-
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Fig. 5. Network topology 1000×1000 m2 with 100 nodes randomly,
and different behaviors of primary services in terms of λON and
λOFF, respectively: (a) λON = 2.6, λOFF = 3.6, (b) λON = 1.6,
λOFF = 2.6, and (c) λON = 3.6, λOFF = 4.6.

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

14

16

18
x 10

6

Number of nodes

Av
e
ra
g
e
 t
h
ro
u
g
h
p
u
t 
(b
p
s)

 

 

Max bandwidths possible (Pb = 0.5544)
Feasible solutions
LB
UB

(a)

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3
x 10

7

Number of nodes

A
ve

ra
g

e 
th

ro
ug

hp
ut

 (b
p

s)

 

 

Max bandwidths possible (Pb = 0.5610)
Feasible solutions
LB
UB

(b)

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Number of nodes

A
ve

ra
g

e 
th

ro
ug

hp
ut

 (b
p

s)

 

 

Max bandwidths possible (Pb = 0.5461)
Feasible solutions
LB
UB

(c)

Fig. 6. Average throughput corresponding to 100 nodes, with different
behaviors of primary services in terms of λON and λOFF, respec-
tively: (a) λON = 2.6, λOFF = 3.6, (b) λON = 1.6, λOFF = 2.6, and
(c) λON = 3.6, λOFF = 4.6.

lated with (λON; λOFF) set of value [(2.6; 3.6), (1.6; 2.6), (3.6;
4.6)], respectively. WhereλON andλOFF are decreased to 1.6(s)
and 2.6(s) from 2.6(s) and 3.6(s) [30], the link pairs are main-
tained at the maximum bandwidth possible based onTON and
TOFF, which are statistically random variables. However, when
λON andλOFF are increased to 3.6(s) and 4.6(s) from 2.6(s) and
3.6(s), theminimumUB is greater than the previous one because
the link pairs are occupied for transmission by the primary user.
Moreover, it is apparent that the number of solutions is fil-

tered remarkably well by the proposed algorithm, since it not
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Fig. 7. Simulation results in different values of tolerance accuracy ε in
terms of λON = 2.6, λOFF = 3.6: (a) ε = 5%, (b) ε = 8%, and
(c) ε = 15%, and (d) ε = 25%.

only minimizes the number of link pairs for routing, but alsouti-
lizes the maximum bandwidth possible on link pairs in different
network scenarios, as can be seen in Figs. 6(a), 6(b), and 6(c), re-
spectively. Therefore, our approach shows that the proposed al-
gorithm can adapt dynamically to network conditions according
to TON andTOFF behaviors in primary services through band-
width approximation in order to reduce significantly the num-
ber of infeasible solutions for routing. Thereby, the network can
avoid the hot areas such as traffic congestion.

B. Tolerance Accuracy Evaluation

Tolerance accuracy is intuitively set at 5% in Section VI-
A to show the tolerance of UB solutions in sorting rangenth.
When the tolerance is changed to a higher percentage, simula-
tions show that the BARCON algorithm is still guaranteed to
obtain an effective solution in various scenarios where thebe-
havior of primary services is unpredictable.
Through 100 nodes randomly distributed over an area of

1,000× 1,000 m2, the tolerance accuracyε is adjusted grad-
ually from 8%, to 15%, and 25%, with λON andλOFF set to
2.6(s) and 3.6(s), respectively. Simulation results obtained in
Figs. 7(a), 7(b), 7(c), and 7(d) show that when the toleranceac-
curacy is adjusted from 5% to 25%, the maximum bandwidth
possible in the network still maintains to avoid effectively the
traffic congestion. Note that the network topology is set ran-
domly on nodes at each time for evaluatingε, so the connectiv-
ity could be different from each other. Therefore, the maximum
bandwidth possible also changes depending on the connectivity
of link pairs in such a network.

VII. CONCLUSION

In this paper, a bandwidth-aware localized-routing algorithm
is proposed to choose highly competitive solutions for rout-
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ing performance in CRNs. Thereby, the paper’s contributionis
achieved nearly 50% throughput utilized as mentioned through
simulation results. The optimization problem is determined by
using the mixed-integer linear programming. Then, the max-
imum of the minimization bandwidth possible of link pairs
are obtained by using the BARCON algorithm. Simulation re-
sults show that the solutions obtained from the proposed algo-
rithm yield a closed-optimal solution for routing performance in
CRNs.
As can be seen from the features mentioned above, the BAR-

CON algorithm is completely suitable for applying to large net-
works since it is capable of reducing the high computational
complexity in such networks. The limitation of BARCON is
how to enhance the routing performance in the case of mul-
tiple overlapping transmissions in the presence of interference
throughout the networks.
In future work, we will conduct the optimal routing toward

interference-aware opportunistic localized-routing in CRNs that
is concerned about the uncertain behavior of primary services in
order to improve the routing performance in terms of multiple
overlapping transmissions in such networks.
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