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An Efficient Throughput Improvement through
Bandwidth Awareness in Cognitive Radio Networks

Tung Thanh Le and Dong-Seong Kim

Abstract:  This paper proposes a bandwidth-aware localized-
routing algorithm that is capable of sensing the available gectrum
bands within a two-hop neighboring for choosing the highly @-
portunistic routes. A mixed-integer linear programming (M ILP) is
utilized to formulate the optimization problem. Then, the proposed
algorithm is used to determine the maximum bandwidth possike of
link pairs via a bandwidth approximation process of relaxedvari-
ables. Thereby, the proposed algorithm can allow selectedutes
corresponding to maximum bandwidth possible between cogtive
radio (CR) users through link pairs in cognitive radio networks. By
comparing the solution values to previous works, simulatio re-
sults demonstrate that the proposed algorithm can offer a dsed-
optimal solution for routing performance in cognitive radio net-
works. The contribution of this paper is achieved through agprox-
imately 50% throughput utilized in the network.

Index Terms: Bandwidth-aware, cognitive radio networks, oppor-
tunistic localized-routing, uncertain behavior primary services.

I. INTRODUCTION
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Fig. 1. Description of the ON-OFF state in a primary user’s channel.

aware opportunistic routing is aware of the entire netwdtrk,
requires a high computation in terms of the exponential-vari
ables which correspond to the dynamically network condgio
Therefore, to meet the practical demands, bandwidth awasen
based on localized routing is addressed to manage its @sour
within a two-hop neighboring routing for optimal routes. this
end, we look for the closed-optimal solution in localizedting

Cognitive radio (CR) is a recent and promising developmemrough the minimization of bandwidth-utilized of link p&iin

in wireless communications technology [1]—-[4]. The traatitof

fixed spectrum sharing in licensed communication netwogks r

sults in inefficient spectrum utilization [5]. Thus, CR isdely

considered to resolve the scarcity of spectrum bands ané¢b nf

the burgeoning requirements of wireless services [6] byleyap

ing opportunistic spectrum sharing, which allows CR users
make efficient use of spectrum bands throughout the netw

[71-{10].

One of the key challenges in cognitive radio networks (CRN

is that how to opportunistically utilize the unoccupied tain
order to effectively exploit them in such networks. In agtdit
how to select the appropriate routes for assigning reseuiee
can be efficiently utilized since the opportunistic spectrthat

we expect to utilize, varies over time and space in termsf t

uncertain behavior of primary services. Therefore, thegra-
tion of spectrum awareness and route optimization is the
challenge in facing with effectively spectrum utilizationsuch
networks [11]-[19].

In this paper, we propose a bandwidth-aware opportungﬁ

tic localized-routing algorithm for CRNs. When the spentru
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the network.

The proposed algorithm is based on the bandwidth approxi-
mation process (BAP) and the branch-and-bourtdBBsearch
Igorithms. After solving the linear programming (LP) pela
ation from the problem formulation in Section IV to determin
We lower bound (LB), infeasible solutions have to be soited

(%;lger to reduce the computational time of the CR network. The
A

P algorithm filters the approximation solutions (uppeubd
gflutions) that satisfy the condition which is within theiwity
of [LB, (1+¢)LB]. Hence, the results can be either feasible or
infeasible solutions. If a feasible solution is found, itcislled
a potential optimal solution. Otherwise, infeasible solug are
decomposed into sub-problems through theBBalgorithm to
ﬁearch for a feasible solution. The procedure is iteratité an
optimal solution is found. The proposed algorithm can zili
infeasible solutions that are still significant to be atae

kggesed via B:B algorithm for finding new potential optimal so-

lutions. Then, the proposed algorithm compares among & set o
otential optimal solutions to choose the maximum valuespos
e, and itis called an optimal solution. Simulation resshow
that solutions achieved through the use of the proposed algo
rithm.

The rest of this paper is organized as follows. Related works
are discussed about the existing works in Section Il. The sys
tem model and the problem formulation are issued in Section
[l and IV, respectively. The proposed algorithm shows how t
solve the problem in Section V. Finally, simulation resualisl
the conclusion are given in Section VI and VI, respectively

1229-2370/14/$10.0q0) 2014 KICS
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Il. RELATED WORKS

In this section, we investigate previous works involvingtiau
hop routing in CRNSs. This section is organized as followssti-i
we review work on spectrum-aware routing in CRNs. We then
review the work on bandwidth-aware routing in such networks
Although bandwidth-aware routing has been studied for imult
hop routing in CRNs [16]-[22], it leads to network routing
overheads and as such is not applicable to real networks. To
the best of our knowledge, no studies have been conducted on
bandwidth-aware localized routing for CRNs to reduce tha-co
putational complexity of such networks.

The papers [16] and [20] study the modeling of spectrum
sharing and sub-band division, scheduling and interfereno-
straints, and flow routing for multi-hop routing in CRNs. The
authors in [20] propose a near-optimal algorithm to sohe th
e eger iy pOGTTIITG (AINLP) IO g evionmert e thy want o ansii. Hence, s Sec

: ' ) Iy ion is organized as including the channel-state modeiiigr-
how to convert a non-linear program to a linear program '"Tth(?erence modeling, and links constraints, for constructing-
paper. The authors in [16] develop a polynomial-time aldponi . g. al , . g

. " . straints and formula in the following section.
to offer highly competitive solutions. They then compare th
values to a lower bound obtained from relaxing the MILP prob-
lem, to find a solution closer to the optimum. A. Channel-Sate Modeling

In other related work, the authors in [21] and [23] propose
the same approach with a different model, by considering theAs illustrated in Fig. 2, we can see that nodes A and C can
joint routing and the frequency scheduling issue in mutph Simultaneously send data to nodes F and K, respectivelf)en t
CRNs limited by an uncertain spectrum Supp|y A pair of péame band:, but in different sub-bands. However, this scene
rameters, /) is utilized to solve the optimization problem bywill be interfered by their mutual interference ranges iéyth
obtaining a LB and applying the threshold-based coarsigpia had not listened for transmission during the period of tifoe
fixing algorithm to determine a feasible solution. Therehy, @ahd Torr as illustrated in Fig. 1, thus, among nodes A and
near-optimal solution to the NP-hard problem is found that-m C that could probably be interfered by using the same band
imizes the required network-wide spectrum resource for O.Rilization. In addition, each node in the network uses spec
users. In [24], Spectrum clouds under mu|t|p|e Cross-|am‘r_ trum SenSing teChniqueS to obtain the available SpeCtan'dg:)a
straints in multi-hop CRNs are studied through the propssed through the medium access control layer as discussed in [20]
vice provider, called secondary service provider (SSPhate and [25]. In particular, the secondary user senses chawizels
vest and utilize the available spectrum bands. Through sseucooperative sensing and reporting channels [9], and aittjest-
tic relax-and-fix algorithm, feasible solutions can be defeed cessible parameters corresponding to the channel-utidizpri-
for the optimization problem by relaxing the integer vatésb Mmary users. Once the secondary user detects the primary user
However, the algorithm does not use an iterative approachif@uiry on its current band in use, the secondary user ce@ses
find a new feasible solution from infeasible solutions. A neff@nsmission for releasing that band in use to the primaey, us
upper bound (UB) for the optimization problem could prob_and start to sense surrounding channels and wait for theopext
ably be found if those values are still significant for findimg Portunity to transmit [7], [12], [26]-[27]. Therefore, weadel
feasible solution. the network that each node can listen to available bandw/iutth

In [6], the authors propose an aggregate throughput and fere transmission. The outcomes of sen_sing are pinary rando
bust route set that are determined by rate-based selettide-s Sequence for each channel with the periodic sensing in ¢oder
gies, corresponding to links’ throughput, which is maxiedz ©Obtain the detection quallity. For inst_anc.e, the IEEE 802ta8-
They also propose a polynomial-time algorithm for solvihg t dard has the small sensing time which is less thars/channel
problem to achieve a near-optimal solution for multi-hop\@R for fast sensing with energy detection [28]-{29].

However, this paper does not describe how to choose the aphote that the primary users have higher priority over the sec

propriate routes in the robust route set when considerintg n@®ndary users. The duration of idle period is the time interva
interference for multi-hop routing in CRNSs. beginning as the channel becomes idle with the last packét se

until the next first packet arrival. The duration of busy pdri

is the time interval beginning at the channel becomes bugy wi
Ill. SYSTEM MODEL the first packet arrival until the last packet sent. Theresaxe
%rr?l assumptions, including (1) the secondary user chanses
channel corresponding to a sub-channel at one time and€?2) th
primary users’ arrival process is Poisson process, thération

LA new upper bound could probably be closer to LB than the previupper 1S ON the service time distribution with many scenarios sash

bound. multimedia traffic, voice traffic [27]. The system can be mod-

Fig. 2. Interference range between nodes in the network.

To avoid interference between transmission and recepti
among nodes in the network, all have to listen to their surdsu
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eled as a M/G/1 quedavith multiple inputs. We assume that
the duration of busy period of theth channel is independent
and identically distributed (i.i.d), and its idle periogttibution
function of thenth channel is exponential distribution, and then

can be given with the probability density function (pdf) as f 30 Mb 70 Mb
lows:

filt) = Ape™ ! 1)
where t> 0; \,, > 0;7=1,--, N; ¢ denotes the duration of the e

it" state period time of theth channel.

In the scope of this paper, we consider the throughput of link
pairs that relies on the unknown behavior of the primary net- 50 Mb 40 Mb
work since the secondary user does not know the definition of
the time slot (busy and idle periods) in the primary change].[
The OFF state means the available spectrum hole which can be
utilized by secondary users (SUs), while the ON state is be-
ing occupied by primary users (PUs), as illustrated in Fig. 1
We model two random variabld$y andZorr, which are the Fig. 3. An example of maximizing the minimum sets of capacities in the
length of the ON state and OFF state, respectively. Depgndin network.
on the different types of primary servicégyn andTopp are
satisfied dlffere_ntdlstrlbuthns. In t-hIS paper, we dentie (t) B. Interference Modeling
and forr(t) which can be given as:

As in Fig. 2, we can see that if node H needs a certain band-
width for forwarding, it listens to the spectrum sensingoirf

Ton ~ fox(t) = efﬁ, (2) mation from nodes A, B, C, and K, then determines the mini-
AON mum bandwidth-utilized on link pair§luc, lck }, {lnc,lcs},
- and{lnc,lca}. We can therefore determine a set of minimum
Torp ~ t) = 2OFF 3 e ) . : : .
orr ~ forr(f) )\OFFe o 3) bandwidth between link pairs and then decide the maximum in

such a set. Hence, we formulate the optimal capacity foimgut
According to the expected lengths of the ON and OFF statgsnode H as follows:
Aon and \orr, these parameters can be estimated by a max-
imum likelihood estimator [29]. The ON-OFF behavior of the

primary service is a renewal process, which is a combindi#en 7, = max{min{lzc,lcx };min{lgc, lep};min{lge, loa}},

tween two Poisson distributions [30]-[31]. Thus, the realén+ (6)
terval isTr1 = Ton + Torr, and the distribution of gz, which wherelyc, lok, lop, andlca are the available capacity on
is denoted byfri(t), is given as: links HC, CK, CB, and CA, respectivelyiy; is the maximum
bandwidth possible on the set of minimum bandwidth of link
Trr ~ fri(t) = fon(t) * forr(t) (4) pairs that have a source routing from node H.
Based on the issues mentioned above, we describe an example
where %" means the convolution operation. as follows. In Fig. 3, supposing that node A wants to make a de-

Then we determine the maximum bandwidth possible for opision for routing to node D. It then has two optional linkak
portunistic routing that is described through the maximink | pairs (c; Icp) and (aB; Izp). These link pairs have capacities
capacity in terms of orr andTon of primary services as fol- of (40; 70) and (50; 30), respectively. First, node A miniesz

lows: those link pairs, then it gets the minimum capacitytofMbps
for the first link pairs and0 Mbps for the second one. Then,
L - E[Ton] C..7" = ppx O,k it maximizes those minimum link pairs, thereby, it can obtai
1) max X ¥} b X ¥} (5) . .
E[Ton] + E[Torr] the maximum throughput possible ¢6 Mbps. Thus, node A

will choose the link pairsitc; {cp) for routing since these link
whereC;;"* is the maximum bandwidth possible of link pairgairs, by avoiding the communication bottleneck, make dse o
depending orforr and Ton; E[Ton] and E[Torr| are the the maximum throughput possible for routing.
mean expectation 6fox andTorr, respectivelyC;;"" is the  Note that (5) and (6) are introduced to show briefly the idea
available link capacity from nodeto j, which will be defined of this paper. While (6) will be obtained by solving problems
in (15); andPb is the fraction of time which the primary user ismentioned in Sections IV and V, (5) is defined to evaluate the
busy. maximum bandwidth possible for opportunistic routing lthse
, et | < tor o _ on various behaviors of primary services.

it the Ttensibs, general () 1 for general holding time distibuton witer _F10M the foregoing, we denofeas the set of available bands

= among all nodes in the network afdC S is the set of available

meanS=1/u, and1 is for a single server with loag = \S, wherep < 1isin
a stable queue. bands of nodé € A. Note that nodg € A hassS; # S;. In
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Table 1. System model Notations.

According to constraint (9), ifz!’* is equal to1, then

> ern 25y must bed, then nodej cannot use sub-baridfor
J

jymbol ;):tﬂg;trl::)r;es e — transmission. Otherwise, i’ is equal to0, theaneTJh Zhk
g Set of available bands among all <1, and npdg’ can transmit to nodg on sub-band: in band
nodes in the network h, but only if nodep € T]ﬁ.
S, Set of available bands at nodén Scheduling constraints can also be considered. It is dhear t
the network if node: uses sub-ban# in bandh for transmission to nodg,
W, Bandwidth of band: € S then any node that can interfere at ngdeill be restricted from
K, Band & is divided into sub-bands using this sub-band. In order to build this Constraint,]géibe
with unequal bandwidths the set qf _nodes that can interfere at ngden sub-band: in
Fuk Bandwidth fraction for a sub-band bandh, giving us:
k in bandh n ) I
R;T Transmission range of node Ij ={p:p#J,h € Sp,dp; < R} (10)
R’ Interference range of node
T.h Set of available nodes that are using Note thatR” and R’ have a mutual relation with the power
bandh and within the transmission spectral density PS) of nodes in the network. WheRS” >
range of nodeé PST, it meansR” < R! as mentioned in [20]. Then, we can
Ijh Set of nodes which can interfere at formulate:
nodej on bandh
PST Power spectral density of transmis- zf‘jk + Z ZZ,’f <1 (11)
sion range geTh
pst Power spectral density of interfer-
ence range wherep € I andp # i. If z['F = 0, the interference of the two
2" Switching mode that sub-baridin nodes at node j but apart from each other can use the same sub-
bandh can either be utilized or not bandk in bandh for their transmissioh As illustrated in Fig. 2,
between nodéand; when node A uses sub-bakdh bandh for transmission to node
L Set of available links in the B, other nodes cannot use this sub-band, i.e., nodes C, D, E, F

localized-routing area

and G cannot use it for their transmission. When node A does
not use this sub-band for transmission to node B, all sudimgn
nodes B, C, D, E, F, G can use sub-banidr transmission. In

addition, letlW}, be the bandwidth of band € S, and band: particular, it can be seen that while node C can use this sub-

can be divided intdy;, sub-bands with unequal bandwidths. hand for transmission to either node H or node K, node D can

In order to assign sub-bands at a node for transceiver with@ie it for transmission to either node G or node E. That means
interference between nodes, we suppose that the schedflingoth nodes C and D can use the sub-barid bandh at the
bands and sub-bands must be guaranteed. Hence, assumesiaé time without interference. Therefore, Fig. 2 illustsaan
bang_h_ can be used in nodésindj if they satisfy the following example that it adheres to the above constraints (10) and (11
condition:

1, if 4 sends data tg on sub-bandch; C. Links Constraints

2k — (7
0, otherwise.

When a source node transmits data to a destination node, it
may need to relay a number of hops in the intermediate nodes to
, reach the destination node. However, how to select the appro

Note that band: € S;;, whereS;; = 5; N S;, which means yiate routes for routing that do not exceed the link capaiit
that band: is available at nodéand;. Nodei € A and it USes g ey point, and therefore, managing the transmissias it
sub-band: in bandh, within its transmission range, which gives, 5 radio link is needed to prevent the exceeding link dgpac
us: W . Moreover, when node is transmitting to nodg on sub-band

T ={j:j#iheS;dij <R} () & in bandh, their neighboring nodésave to avoid using sub-
Wherej’;h is the set of nodes that can use the available bandand% in bandh for transmission. At the network level, we
within the transmission range of nodeR?; d; is the distance denotel;; as the link data rate from nodeo nodej, wherel;;
between nodéand;. € L and belongs to the set of available nodes that are using band

We note that nodécannot transmit to multiple nodes simul» and are within the transmission range of nodg/ .
taneously on the same sub-bands, since it will encountet-a bo Note that if node is a source node or destination node of link
tleneck phenomenon in the communication links. Therefoee, I, the rate of nodé is defined as.,.(1) or r4s (1), respectively.
can make a constraint as follows:

3Note that the interference range of a node is twice times@titnmunication
hk hk range.
Zij + Z jp <1 (©) 4The neighboring nodes are those within the transmissiogerafi nodesi
pET) and/orj.



150 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 16, NO. 2, APRI2014

Hence, we have work. Thus, we have
k=K,
D 1 (1) = rae(l), (12) min SN DT Fuex W x 2, (A7)
jeTih i€A heS;; jeTi’1 k=1
> 1) = ras (D). (13) st 2FE Y DTN N aM <, (18)
pET) gET] pell p#i i€A hESi,
k=K,
Then, we formulate the constraint for two-hop routing which S>> wLws > Y ok 19
is mentioned as a localized-routing as follows: IEL ig¢race (1) j¢rarc(l) hesS;; k=1

The mathematical formulation of the optimization problem
given by (17), (18), and (19) contains binary variab:lg’s Note

Z Zlij(l) = Z Z Z Lip(1) that £}, can be a minimum a8 and maximum ad. There-
JETH i#i PETH i€rac(l) pé{rass(D]i} fore, itis possible to linearize the optimization problesrirathe
(14)  mathematical formulation Section from [33] by represemtn
+ Z } Z Z ‘ Lp; (1) new set of continuous varlabléi{‘j € [0, 1], which replace the

JET] j€rast () pE{rsrc (D)5} termsz/t¥ x Fyy in (17). Note thatD’F = 21 x Fy,.. Then, vari-

ablesD?j’“ have to satisfy the following linearization constraints:
Note that node in (14) plays a role as an intermediate node

in the proposed model. DIf < 2, (20)
This model differs from that of [20], where the authors aim D% < [, 1)

to make the complexity of links throughout the entire networ Yo ’

Thus, it is generally impractical in real networks. However D > 2 + Fuy — 1. (22)

this paper, we suppose a two-hop neighboring that is afpéica

: ; L : 2 To sum up, the problem is to minimize in (17), subject to
to the network, in which condition (14) is satisfied. constraints (7), (9), (10), (11), (12), (14), (16), (20)1 2and

In addition, each link data rate cannot exceed the capat:ity(gz) whereWi, P, , rue (1), andrae (1) are constants, and the
the link. Therefore, the capacity of link; via sub-band: in 0ptir1nizati0n variables arel’* l--(l;t Consequently we have
(IR . ’

bandh can be described as [32]: the mixed-integer linear programming (MILP) formulatiam i
terms of an NP-hard problem as follows:

P
CZk = Zzlzk X Fpi x Wy, x lOgg(l =+ ;) (15)
k=Kp
whereP = g;;x PS; g;; is the power propagation gai®s is mind " > > > Wi x DI, (23)
the power spectral density of a CR node; anid the Gaussian 1€A hES;; jeTh k=1
noise density. In addition, we assume that all CR nodes have st (18), (19), (20), (21), and(22). (24)

the sameP S for transmission. Note that these parameters have
been mentioned in [20], and therefore will not be elaborated
this paper.

From (14) and (15), we have

V. BARCON ALGORITHM
The BARCON algorithm is based on the bandwidth approxi-

k=K, mation process (BAP) and branch-and-boun& B algorithm.
Z Z Z 1i; (1) < Z Z Chk, (16) After solving LP relaxation from conditions (23) and (24) in
1EL igram (1) jéroe(l) hes,; k=1 ! Section IV in order to determine the LB, infeasible solution

need to be sorted to reduce the computational complexityeof t
network. To this end, the BAP algorithm filters the approxima
tion solution$ that satisfy the condition in which they are within
the sorting range of the vicinity of [LB, (1}LB] in terms of the
LBS. If a feasible solution is found, it is called a potentialiept
In a multi-hop CR network, the spectrum bands that are avaital solution, and infeasible solutions are continuousigode-
able at one node could be utilized by another node in the ngesed into sub-problems using thé& B algorithm for search-
work. Moreover, a given set of available frequency bands iag a new feasible solution if infeasible solutions are gigant
a particular node that is completely different from the sats [34]. The procedure iterates until an optimal solution isrfd
other nodes in the CRN. Hence, the large diversity of theafetsafter comparing to maximize the set of solutions as illusttan
available bands needs to be allocated into sub-bands fa- utiFig. 4.
ing such bands more flexibly in various network conditions. | N . . . . .
. L. ° Approximation solutions are potential optimal solutiorssveell as potential
Mathematically, we formulate the optimization problempper bound solutions.
based on the minimization of bandwidth-utilized in the net-SNote thate is the tolerant accuracy within the range(ok e < 1.

IV. PROBLEM FORMULATION
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LB UB,  UBs UB: UrF] Algorithm 1 The BARCON algorithm
1: Initialize the procedure by relaxing all binary variab[é%"’
1 .\"' : /Y € [0, 1]. (This step will relax MILP to LP relaxation).
oorting range 2 | .. 2:  Solvethe LP relaxation to determine the LB.

3:  With the LB determined by solving the LP relaxation, the
BAP is applied to determine the UB with satisfying the con-
> dition (LB < UB < (1 4 ¢)LB).

Sorting range 3

Sorting range 2

B Sorting range 1 X 4. if Solutions obtained satisfy the BAP conditithen
5: Compare to previous potential optimal solutions to
Fig. 4. lterative search for finding new UB solutions until infeasible solu- select the optimal solutions (maximum bandwidth
tions cannot be decomposed by the branch-and-bound algorithm. possible) in the sets.
6: Step toLine 11.
The operation of the BARCON algorithm is based on the it else o _ )
8: Searchfor finding feasible solutions by B&B search

erative steps as follows:

« Firststep: A LB solution is obtained by solving LP relaxation
in polynomial-time. However, the solutions can be infelsib
since they are fractional. The BAP algorithm is applied t%‘_
determine the UB solutions that are potentially optimatsol 10:
tions. 1

« Second step: The condition of [LB,(1¥)LB] is utilized to
sort the solutions that do not satisfy the condition. Hetfoe,
set of satisfied solutions are obtained via the condition and
then, the minimum sets of such solutions are maximized to VI. SIMULATION PERFORMANCE

select the Optlmal solution. If no feasible solution is fdun In this Section, we describe simulations performed using
the procedure turns to the third step, otherwise, it turrte¢o MATLAB under network scenarios to verify the effectiveness
fourth Step. Note that if infeasible solutions are Stllerfg the proposed algorithm through the contribution of neaﬂ%s
cant, these solutions are passed to the third step. throughput utilized, and thereby improving load-balancéhie

« Third step: If there is no feasible solution after the seconfletwork. First, we demonstrate bandwidth-aware perfooaan
step, and infeasible solutions are still significant, theB through the efficiency of maximum bandwidth possible on link
algorithm is used to decompose the infeasible solutiorts irl:;airs throughout the network t0p0|ogy. The tolerance aour
sub-problems for the next iteration loops until an optintl s - js evaluated by considering the uncertain behavior of pryma
lution is found. users. Therefore, simulation results show that the algoritan

« Fourth step: When a set of potential optimal solutions is obpe aple to adapt to different scenarios with reliability andla-
tained, those solutions are maximized to find optimal soluglity in the network.

tions, as described in algorithm 1.

According to the discussion as above, we denoteftfiatand  A. Bandwidth-aware Performance
U B; are the LB and UB of problem respectively. In terms of
LB; andU B;, the minimum LB and UB can be determined aﬁ

algorithm to decompose infeasible solutions to
sub-problems.
Step toLine 2.
end if
Based on all optimal solutions, solve the optimization prob
lem and establish flows routing to the network.

Initially, a network topology is deployed with 100 nodes-dis
ibuted randomly over the area of 1,000,000 n¥. The trans-

follows. mission range of the nodes is 100 meters for CR networks such
LByyin = min {LB;}, (25) as, for example, wireless microphones with small trandoriss
ZE‘.SP ranges as mentioned in [35]. In addition, random bandwidth
UBuin = S {UB:} (26)  values are uniformly distributed in the interval{df, 35} Mbps.

The tolerance accuraeyis set at 5. The bandwidth-utilized
where SP is the set of problems. Note that the purpose dfy CR users is considered by the busy-idle tifagr and7opr.
(25) and (26) is to shorten the computational time by obtaiin fact, Tox andTorr are random variables depending on the
ing (1 + ¢) optimal solutions. A problem can be removed fronprimary users [30]. Moreovef,ox andTorr are independent

the set of problems if it satisfies and exponential distributions witkon and\orr Which are the
expected lengths of ON and OFF states correspondifigyto
(1+¢)LB;, >UB,. (27) andTorr, respectively. Note thafoy andTorr are obtained

in the ceasing process, we can then evaluate the througlithut w
The current UB solution cannot be removed if the minimurte different behaviors &fon andZorr from primary services.

UB solutions are not better than the current optimal soiytis Figs. 6(a), 6(b), and 6(c) illustrate average throughpoitses
formulated in constraint (27). Otherwise, the current UBIso sponding to network topologies Figs. 5(a), 5(b), and 5(€), r
tion will be replaced by the minimum UB solution, which is thespectively. Although network topologies have the same size
(14 ¢) optimal solution, as the latest optimal solution as illust,000x 1,000 n¥ and number of nodes, the nodes are distributed
trated in Fig. 4. randomly and the bandwidth-utilized on the network relias o

the expected lengthson and Aorr. In this paper, we simu-
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Fig. 5.

- %@}
%
S

1000

(©

Network topology 1000x1000 m? with 100 nodes randomly,

and different behaviors of primary services in terms of Aon and
AoFF, respectively: (a) Aon = 2.6, A\orr = 3.6, (b) A\on = 1.6,
)\OFF = 2.6, and (C) )‘ON = 3.6, AOFF = 4.6.

5

1

5

© Feasible solutions
B

s)
N

uB

® Max bandwidths possiblp = 0.5544)

5 8

0. @e.0.70 -

o ©0°©°

®

S0 0

Smoova .ed?

Average throughput (op:

S

pde o
ls®0

<

»

°

,poop o’o(?f’ o &
!b"bo'o L
9'2" °e %R0

E
CENY

ooo

QQ'O

© m"q,.

0 20

@)

40 60
Number of nodes

80 100

Max bandwidths possible (Pb = 05610}
Feasible solutions

oe

us

Average throughput (bps)
I

40 60
Number of nodes

(b)

Feasible solutions

us

Max bandwidths possible (Pb = 05461)

%
15 0(39 O

05.'04

%t'

Average throughput (bps)
8
o
&
0

o 9- -~" OM
® "?’-.d*’é’ % op
AN T LT,

5
oo@o
OO

Q'.OO [

0 20

80 100

Nimber of nodes

(©

Fig. 6. Average throughput corresponding to 100 nodes, with different
behaviors of primary services in terms of A\on and Aopr, respec-
tively: (&) Aon = 2.6, Aorr = 3.6, (b) Aon = 1.6, A\orr = 2.6, and
(c) Aon = 3.6, A\orFr = 4.6.
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Fig. 7. Simulation results in different values of tolerance accuracy ¢ in
terms of A\on = 2.6, Aorr = 3.6: () ¢ 5%, (b) ¢ = 8%, and
(c) e = 15%, and (d) e = 25%.

only minimizes the number of link pairs for routing, but algoé
lizes the maximum bandwidth possible on link pairs in difer
network scenarios, as can be seenin Figs. 6(a), 6(b), ahd&{(c
spectively. Therefore, our approach shows that the prapaise
gorithm can adapt dynamically to network conditions acirayd
to Ton andTorr behaviors in primary services through band-
width approximation in order to reduce significantly the rum
ber of infeasible solutions for routing. Thereby, the netacan
avoid the hot areas such as traffic congestion.

B. Tolerance Accuracy Evaluation

Tolerance accuracy is intuitively set a#%5in Section VI-

A to show the tolerance of UB solutions in sorting ranga.
When the tolerance is changed to a higher percentage, simula
tions show that the BARCON algorithm is still guaranteed to
obtain an effective solution in various scenarios wherebie
havior of primary services is unpredictable.

Through 100 nodes randomly distributed over an area of
1,000 x 1,000 n?, the tolerance accuraeyis adjusted grad-
ually from 8%, to 15%, and 2%, with A\ox and Aorr Set to
2.6(s) and 3.6(s), respectively. Simulation results olat@iin
Figs. 7(a), 7(b), 7(c), and 7(d) show that when the tolerauce
curacy is adjusted from% to 25%, the maximum bandwidth
possible in the network still maintains to avoid effectivéhe

lated with Qon; Aorr) set of value [(2.6; 3.6), (1.6; 2.6), (3.6;traffic congestion. Note that the network topology is set ran
4.6)], respectively. Wherkon and\orr are decreased to 1.6(s)}domly on nodes at each time for evaluatingo the connectiv-
and 2.6(s) from 2.6(s) and 3.6(s) [30], the link pairs aremaiity could be different from each other. Therefore, the maxim
tained at the maximum bandwidth possible basedgn and bandwidth possible also changes depending on the conitgctiv
Torr, Which are statistically random variables. However, wheof link pairs in such a network.

Aon and\orr are increased to 3.6(s) and 4.6(s) from 2.6(s) and

3.6(s), the minimum UB is greater than the previous one beEau

the link pairs are occupied for transmission by the primasgru

VII. CONCLUSION

Moreover, it is apparent that the number of solutions is fil- In this paper, a bandwidth-aware localized-routing aldponi
tered remarkably well by the proposed algorithm, since it ns proposed to choose highly competitive solutions for rout
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ing performance in CRNs. Thereby, the paper’s contribuBon[17] J. Kim and M. Krunz, “Spectrum-aware beaconless gquigeal routing
achieved nearly 56 throughput utilized as mentioned through

simulation results. The optimization problem is deterrdibg

(18]

using the mixed-integer linear programming. Then, the max-
imum of the minimization bandwidth possible of link pairs
are obtained by using the BARCON algorithm. Simulation rétol
sults show that the solutions obtained from the proposeat alg

rithm yield a closed-optimal solution for routing perfornez in
CRNs.

[20]

As can be seen from the features mentioned above, the Bﬁﬁ]

CON algorithm is completely suitable for applying to larggn

works since it is capable of reducing the high computational
complexity in such networks. The limitation of BARCON igf??]
how to enhance the routing performance in the case of mul-

tiple overlapping transmissions in the presence of interfee
throughout the networks.

(23]

In future work, we will conduct the optimal routing toward,

interference-aware opportunistic localized-routing RNG that
is concerned about the uncertain behavior of primary sesvit

order to improve the routing performance in terms of mLmipI[25]

overlapping transmissions in such networks.
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