• 제목/요약/키워드: Liner failure

검색결과 67건 처리시간 0.025초

A numerical approach for assessing internal pressure capacity at liner failure in the expanded free-field of the prestressed concrete containment vessel

  • Woo-Min Cho;Seong-Kug Ha;SaeHanSol Kang;Yoon-Suk Chang
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3677-3691
    • /
    • 2023
  • Since containment building is the major shielding structure to ensure safety of nuclear power plant, the structural behavior and ultimate pressure capacity of containments must be studied in depth. This paper addresses ambiguous issue of determining free-field position for liner failure by suggesting an expanded free-field region and comparing internal pressure capacities obtained by test data, conservative assumption and suggested free-field region. For this purpose, a practical approach to determine the free-field position for the evaluation of liner tearing is carried out. The maximum principal strain histories versus internal pressure capacities among different free-field positions at various azimuths and elevations are compared with those at the equipment hatch as a conservative assumption. The comparison shows that there are considerable differences in the internal pressure capacity at liner failure within the expanded free-field region compared to the vicinity of the equipment hatch. Additionally, this study proposes an approximate correlation with conservative factors by considering the expanded free-field ranges and material characteristics to determine realistic failure criteria for liner. The applicability of the proposed correlation is demonstrated by comparing the internal pressure capacities of full-scale containment buildings following liner failure criteria according to RG 1.216 and an approximate correlation.

금속소재 부품의 고장분석 사례 (Failure Analysis of Metallic Components)

  • 송진화;홍기정;장창환;김영섭
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권1호
    • /
    • pp.51-61
    • /
    • 2006
  • Failure analyses were conducted on a crank shaft and a chock liner by using X-ray diffraction, optical microscopy and SEM/EDS techniques. In the crank shaft, a crack developed where a maximum tensile stress coincided with band structure formed by hot forging. The maximum tensile stress was observed to originate from volume expansion during high frequency induction heat treatment and the band structure to develop between upper and lower dies during hot forging. In the chock liner, the wear mechanism varied with the chemical affinity and hardness of liner material relative to friction pair of housing liner. Brass of low chemical affinity and hardness compared to housing liner showed uniform adhesive wear. STS 304 and STS 420J2 of high chemical affinity showed galling and scoring respectively.

  • PDF

Experimental study on the mechanical response and failure behavior of double-arch tunnels with cavities behind the liner

  • Zhang, Xu;Zhang, Chengping;Min, Bo;Xu, Youjun
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.399-410
    • /
    • 2020
  • Cavities often develop behind the vault during the construction of double-arch tunnels, generally in the form of various defects. The study evaluates the impact of cavities behind the vault on the mechanical and failure behaviors of double-arch tunnels. Cavities of the same sizes are introduced at the vault and the shoulder close to the central wall of double-arch tunnels. Physical model tests are performed to investigate the liner stress variation, the earth pressure distribution and the process of progressive failure. Results reveal that the presence of cavities behind the liner causes the re-distribution of the earth pressure and induces stress concentration near the boundaries of cavities, which results in the bending moments in the liner inside the cavity to reverse sign from compression to tension. The liner near the invert becomes the weak region and stress concentration points are created in the outer fiber of the liner at the bottom of the sidewall and central wall. It is suggested that grouting into the foundation soils and backfilling injection should be carried out to ensure the tunnel safety. Changes in the location of cavities significantly impact the failure pattern of the liner close to the vault, e.g., cracks appear in the outer fiber of the liner inside the cavity when a cavity is located at the shoulder close to the central wall, which is different from the case that the cavity locates at the vault, whereas changes in the location of cavities have a little influence on the liner at the bottom of the double-arch tunnels.

금속라이너를 가진 후프 와인딩 복합재 연소관의 파열예측 (Burst Prediction of Hoop Winding Composite Case with Metal Liner)

  • 한혁섭;김형근;이영원
    • 한국추진공학회지
    • /
    • 제19권5호
    • /
    • pp.78-83
    • /
    • 2015
  • 복합재 연소관은 적층구조이므로 한 층이 손상되면 손상이 진전되어 전체 연소관의 파손이 발생한다. 금속재 라이너 위에 복합재를 와인딩하면 한 층이 손상되어도 전체 연소관의 파손이 발생되지는 않는다. 본 연구에서는 금속재 연소관에 후프 와인딩한 하이브리드 연소관의 파열압력을 예측하기 위해 유한요소해석과 연소관의 파열시험을 통하여 결과를 비교하였으며, 하이브리드 연소관의 파열압력 예측을 통하여 알루미늄 라이너의 두께를 결정하고 복합재료의 적층두께를 결정함으로써 하이브리드 연소관 설계에 사용할 수 있다.

선박엔진의 실린더 라이너의 손상 진단을 위한 진동 분석법 (Vibration Analysis for Failure Diagnosis of Cylinder Liner of Large Ship Engine)

  • 구현호;조연상;박준홍;박흥식
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.21-28
    • /
    • 2014
  • Damage to the cylinder liner of large ship engines, such as scuffing on the surface, can occur very easily because it is operated in a corrosive environment. This scuffing may be due to oil film destruction and corrosive wear caused by water and sulfur included in the fuel, abrasive impurities, and poor lubricants. Thus, a method for monitoring the condition and diagnosing the failure of the cylinder liner and piston ring is needed. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which simulated an engine cylinder in a corrosive atmosphere. The lubricants used were base oil, stirred oil with distilled water, a NaCl solution, and dilute sulfuric acid. The friction coefficient and frequency spectrum were measured using a load cell and acceleration sense in each experimental condition. We then used these results to diagnose the failure of the cylinder liner.

역해석을 통한 복합차수시스템의 점토차수재 사면파괴 사례 연구 (Back analysis on shear failure of compacted soil liner in composite liner system)

  • 이철호;민선홍;최항석;티모시 스탁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1315-1323
    • /
    • 2010
  • This paper deals with a case study on a unique slope failure in a liner system of a municipal solid waste containment facility during construction because the sliding interface is not the geomembrane/compacted low permeability soil liner (LPSL) but a soil/soil interface within the LPSL. From the case study, it is concluded that compaction of the LPSL should ensure that each lift is kneaded into the lower lift so a weak interface is not created in the LPSL, and the LPSL moisture content should be controlled so it does not exceed the specified value, .e.g., 3% - 4% wet of optimum, because it can lead to a weak interface in the LPSL. In addition, drainage materials should be placed over the geomembrane from the slope toe to the top to reduce the shear stresses applied to the weakest interface, and equipment should not move laterally across the slope if it is unsupported but along the slope while placing the cover soil from bottom to top.

  • PDF

Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent

  • Jo, Eun-Hye;Huh, Yoon-Hyuk;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.374-380
    • /
    • 2018
  • PURPOSE. The effect of silica-based glass-ceramic liners on the tensile bond strength between zirconia and resin-based luting agent was evaluated and compared with the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing primers. MATERIALS AND METHODS. Titanium abutments and zirconia crowns (n = 60) were fabricated, and the adhesive surfaces of the specimens were treated by airborne-particle abrasion. The specimens were divided into 5 groups based on surface treatment: a control group, 2 primer groups (MP: Monobond Plus; ZP: Z Prime Plus), and 2 liner groups (PL: P-containing Liner; PFL: P-free Liner). All specimens were cemented with self-adhesive resin-based luting agent. After 24-hour water storage and thermocycling (5,000 cycles, $5^{\circ}C/55^{\circ}C$), the tensile bond strength was measured using a universal testing machine. Failure mode analysis and elemental analysis on the bonding interface were performed. The data were analyzed using Kruskal-Wallis test, Dunn's post hoc test, and Fisher's exact test. RESULTS. The liner groups and primer groups showed significantly higher tensile bond strengths than that of the control group (P<.05). PFL showed a significantly higher tensile bond strength than the primer groups (P<.05). The percentage of mixed failure was higher in the primer groups than in the control group (P<.001), and all the specimens showed mixed failure in the liner groups (P<.001). A chemical reaction area was observed at the bonding interface between zirconia and liner. CONCLUSION. The application of liner significantly increased the tensile bond strength between zirconia and resin-based luting agent. PFL was more effective than MDP-containing primers in improving the tensile bond strength with the resin-based luting agent.

연성 의치상 이장재의 인장결합 강도와 탄성계수에 관한 연구 (THE TENSILE BOND STRENGTH AND ELASTIC MODULUS OF THE SOFT DENTURE LINING MATERIALS)

  • 김병진;고준원;이용근;조혜원
    • 대한치과보철학회지
    • /
    • 제35권3호
    • /
    • pp.458-469
    • /
    • 1997
  • This study was to compare the tensile bond strength and flexibility of four different soft liners(Coe-Soft, Soft Relining, Soft-Liner, Dura Base Soft) before & after thermocycling. Each soft liner was bonded to denture base resin block, and measured the tensile bond strength and modulus of elasticity using Universal testing machine. The mean value of tensile bond strength and modulus of elasticity for each experimental groups were statistically processed by SPSS(Statistical Package of Social Science). The obtained results were as follows : 1. Dura Base Soft had the highest tensile bond strength and Coe-Soft had the lowest tensile bond strength. 2. Coe-Soft had the lowest modulus of elasticity, and Dura Base Soft had the highest modulus of elasticity. 3. Thermocycling had no effects on the tensile bond strength and modulus of elasticity of all the soft liners. 4. The failure modes of Coe-Soft, Soft Relining, Soft Liner were mainly cohesive failure, and that of Dura Base Soft were mainly adhesive failure.

  • PDF

시멘트 분쇄기용 테이블 라이너의 굽힘 피로강도의 실험적 조사 (An Experimental Investigation of Bending Fatigue Strength in Table Liner for Cement Mill)

  • 백석흠;이경영;조석수;장득열;주원식
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1214-1220
    • /
    • 2007
  • The vertical roller mill, which performs the grinding and partly blending of raw material, is the one of the important machine to produce ordinary portland cement. It has been reported that an unexpected fatigue failure occurred in a table liner in the course of grinding portland cement. The life of table liner is estimated to $4{\times}10^7$ cycles in the design stage, but at the field, when its operating time reaches to $2{\times}10^6{\sim}8{\times}10^6$ cycles, the fracture of table liner begins to be found. The fracture of table liner is initiated from the outside edge of grinding path contacting with the grinding roller. Its maintenance normally take 30 % of the total maintenance costs of the roller mill. Therefore, this study shows the clarification of the reasons occurring the fatal destruction of the table liner by fatigue fracture analysis utilizing fracture mechanics and by the finite element method. And, the results from Goodman diagram illustrate relationship of including information on the transition between tensile and bending fatigue strength in the fatigue characterization of table liner.

피로하중을 받는 테이블 라이너의 파손응력예측에 관한 연구 (A Study on the Prediction of Failure Stress for Table Liner under Fatigue Load)

  • 이동우;주원식
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.97-105
    • /
    • 2004
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers and the centrifugal force by rotation of table. It demands $4{\times}10^7$ expense of life but has $4{\times}10^6~-8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller The repair expense fur it amounts to 30% of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner of vertical roller mill using HDM and fatigue analysis