• Title/Summary/Keyword: Linearization method

Search Result 484, Processing Time 0.037 seconds

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

Application of linearization method for large-scale structure optimizations (구조물 최적화를 위한 선형화 기법)

  • 이희각
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 1988
  • The linerization method as one of the recursive quadratic programming method is applied for the optimal design of a large-scale structure supported by Pshenichny's proof of global convergence of the algorithm and convergence rate estimates. The linearization method transforms all constants of the design problem into an equivalent linearized constraint and employs the active-set strategy. This results in substantial computational savings by reducing the number of sate and adjoint to be solved at every design iteration. The illustrative example of plates with beams supported by columns is the typical one of a large-scale structure to give successful optimum solutions with satisfactory convergence criteria. Hopefully, the method may be applicable to all classes of optimization problems.

  • PDF

A Study on Motion Planning Generation of Jumping Robot Control Using Model Transformation Method (모델 변환법을 이용한 점핑 로봇 제어의 운동경로 생성에 관한 연구)

  • 서진호;산북창의;이권순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.120-131
    • /
    • 2004
  • In this paper, we propose the method of a motion planning generation in which the movement of the 3-link leg subsystem is constrained to a slider-link and a singular posture can be easily avoided. The proposed method is the jumping control moving in vertical direction which mimics a cat's behavior. That is, it is jumping toward wall and kicking it to get a higher-place. Considering the movement from the point of constraint mechanical system, the robotic system which realizes the motion changes its configuration according to the position and it has several phases such as; ⅰ) an one-leg phase, ⅱ) in an air-phase. In other words, the system is under nonholonomic constraint due to the reservation of its momentum. Especially, in an air-phase, we will use a control method using state transformation and linearization in order to control the landing posture. Also, an iterative learning control algorithm is applied in order to improve the robustness of the control. The simulation results for jumping control will illustrate the effectiveness of the proposed control method.

Error Analysis of time-based and angle-based location methods

  • Kim, Dong-Hyouk;Song, Seung-Hun;Sung, Tae-Kyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.479-483
    • /
    • 2006
  • Indoor positioning is recently highlighted and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are often classified into time-based and angle-based one, and this paper presents the error analysis of these location methods. Because measurement equations of these methods are nonlinear, linearization is usually needed to get the position estimate. In this paper, Gauss-Newton method is used in the linearization. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of error ellipses of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid scheme is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA method.

  • PDF

Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously

  • Wei, Biao;Fu, Yunji;Jiang, Lizhong;Li, Shanshan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.591-606
    • /
    • 2022
  • When the friction pendulum system and shear keys work together to resist the ground motion, which inclined inputs (non 45°) to the bridge structure, the shear keys in XY direction will be sheared asynchronously, endowed the friction pendulum system with a violent curvilinear motion on the sliding surface during earthquakes. In view of this situation, firstly, this paper abandons the equivalent linearization model of friction and constructs a Spring-Coulomb friction plane isolation system with XY shear keys, and then makes a detailed mechanical analysis of the movement process of friction pendulum system, next, this paper establishes the mathematical model of structural time history response calculation by using the step-by-step integration method, finally, it compiles the corresponding computer program to realize the numerical calculation. The results show that the calculation method in this paper takes advantage of the characteristic that the friction force is always µmg, and creatively uses the "circle making method" to express the change process of the friction force and resultant force of the friction pendulum system in any calculation time step, which can effectively solve the temporal nonlinear action of the plane friction; Compared with the response obtained by the calculation method in this paper, the peak values of acceleration response and displacement response calculated by the unidirectional calculation model, which used in the traditional research of the friction pendulum system, are smaller, so the unidirectional calculation model is not safe.

Dynamic Characteristic Analysis and LMI-based H_ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Kim, In-Soo;Keh, Joong-Eup;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1187-1200
    • /
    • 2002
  • This paper is concerned with the design or an LMI (Linear Matrix Inequality) -based H$\infty$ controller for a line of sight (LOS) stabilization system and with its robustness performance. The linearization of the system is necessary to analyze various nonlinear characteristics, but the linearization entails modeling uncertainties which reduce its performance. In addition, the stability of the LOS can be adversely affected by angular velocity disturbances while the vehicle is moving. As the vehicle accelerates, all the factors that are Ignored and simplified for the linearization tend to Inhibit the performance of the system. The robustness in the face of these uncertainties needs to be assured. This paper employs H$\infty$ control theory to address these problems and the LMI method to provide a suitable controller with minimal constraints for the system. Even though the system matrix does not have a full rank, the proposed method makes it possible to design a H$\infty$ controller and to deal with R and S matrices for reducing the system order. It can be also shown that the proposed robust controller has a better disturbance attenuation and tracking performance. The LMI method is also used to enhance the applicability of the proposed reduced-order H$\infty$ controller for the system given. The LMI-based H$\infty$ controller has superior disturbance attenuation and reference input tracking performance, compared with that of the conventional controller under real disturbances.

Nonlinear Control by Feedback Linearization for Panel Flutter at Elevated Temperature (열하중을 받는 패널플러터의 궤환 선형화에 의한 비선형제어)

  • 문성환;이광주
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.45-52
    • /
    • 2006
  • In this study, a nonlinear control by feedback linearization method, one of nonlinear control schemes based on the nonlinear model, is proposed to suppress the flutter of a supersonic composite panel using piezoelectric materials. Most of the previous panel flutter controllers are the LQR(Linear Quadratic Regulator) which is based on the linear model. A nonlinear feedback linearizing controller proposed in this study considers the nonlinear characteristics of the system model. We use the actuator implemented by piezoceramic PZT. Using the principle of virtual displacements and a finite element discretization with the conforming four-node rectangular element, we first derive the discretized dynamic equations of motion, which are transformed into a nonlinear coupled-modal equations of motion of state space form. The effectiveness of the proposed method is also compared with the LQR based on the linear model through numerical simulations in the time domain using the Newmark method.

LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems (LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석)

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.582-589
    • /
    • 2003
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included Un the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

On the Stability of Critical Point for Positive Systems and Its Applications to Biological Systems

  • Lee, Joo-Won;Jo, Nam Hoon;Shim, Hyungbo;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1530-1541
    • /
    • 2013
  • The coexistence and extinction of species are important concepts for biological systems and can be distinguished by an investigation of stability. When determining local stability of nonlinear systems, Lyapunov indirect method based on the Jacobian linearization has been widely employed due to its simplicity. Despite such popularity, it is not applicable to singular systems whose Jacobian has at least one eigenvalue that is equal to zero. In such singular cases, an appropriate Lyapunov function should be sought to determine the stability of systems, which is rather difficult and quite involved. In this paper, we seek for a simple criterion to determine stability of the equilibrium that is located at the boundary of the positive orthant, when one of eigenvalues of the Jacobian is zero. The goal of the paper is to present a generalized condition for the equilibrium to attract all trajectories that starting from initial condition in the positive orthant and near the equilibrium. Unlike the Lyapunov direct method, the proposed method requires just a simple algebraic computation for checking the stability of the critical point. Our approach is applied to various biological systems to show the effectiveness of the proposed method.

Adaptive Control Method for a Feedforward Amplifier (피드포워드 증폭기의 적응형 제어 방법)

  • Kang, Sang-Gee;Yi, Hui-Min;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2004
  • A feedforward amplifier, which is composed of several components, is an open loop system. Therefore, feedforward amplifiers are apt to deteriorate its performance according to the environmental changes even though the cancellation performance and the linearization bandwidth of feedforward systems are superior to other linearization methods. A control method is needed for maintaining the original performance of feedforward amplifiers or to keep the desired performance within a little error bounds. In this paper, an adaptive control method using the steepest descent algorithm, which has a good convergence characteristic and is easy to implement, is suggested. The characteristics of the suggested control method compare with the characteristics of other control methods and the simulation results are presented.