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On the Stability of Critical Point for Positive Systems  
and Its Applications to Biological Systems 

 
 

Joo-Won Lee*, Nam Hoon Jo†, Hyungbo Shim** and Young Ik Son*** 
 

Abstract – The coexistence and extinction of species are important concepts for biological systems 
and can be distinguished by an investigation of stability. When determining local stability of nonlinear 
systems, Lyapunov indirect method based on the Jacobian linearization has been widely employed due 
to its simplicity. Despite such popularity, it is not applicable to singular systems whose Jacobian has at 
least one eigenvalue that is equal to zero. In such singular cases, an appropriate Lyapunov function 
should be sought to determine the stability of systems, which is rather difficult and quite involved. In 
this paper, we seek for a simple criterion to determine stability of the equilibrium that is located at the 
boundary of the positive orthant, when one of eigenvalues of the Jacobian is zero. The goal of the 
paper is to present a generalized condition for the equilibrium to attract all trajectories that starting 
from initial condition in the positive orthant and near the equilibrium. Unlike the Lyapunov direct 
method, the proposed method requires just a simple algebraic computation for checking the stability of 
the critical point. Our approach is applied to various biological systems to show the effectiveness of 
the proposed method. 
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1. Introduction 
 

Stability is an important concept that can provide 
powerful insight into qualitative behavior of various 
biological systems [1, 2] such as predator-prey systems, 
viral and immune systems, epidemic systems and so on. 
Stability analysis tells us whether a solution trajectory near 
an equilibrium will converge toward or move away from it. 
For predator-prey system [3-15], an investigation of 
stability distinguishes the coexistence of predators and prey 
from the extinction of some species. In addition, stability 
analysis may determine the basin of attraction of each 
equilibrium, that is, the region of coexistence and the 
region of extinction. Aside from predator-prey systems, 
some research works on virus infection of CD4 + cells have 
been performed in [16-20]. In their works, mathematical 
models describing infection dynamics have infection-free 
equilibrium and chronic-infection equilibrium. The infection 
will die out if the former is stable, while the infection will 
persist if the latter is stable. For the epidemic model with 
some vaccination strategy [21-23], an examination of 
stability can predict whether the vaccination successfully 
leads to disease eradication. An epidemic outbreak is 
produced if an endemic equilibrium is stable, whereas the 
disease will die out if a disease-free equilibrium is stable. 

In order to check the local stability of a nonlinear system 
at its certain equilibrium, Lyapunov indirect method based 
on the Jacobian linearization has been widely employed 
due to its simplicity. Despite such popularity, the method 
cannot be applied to determine stability when one 
eigenvalue of the Jacobian matrix is equal to zero. In fact, 
although the research works in [2-12, 15-18] have used the 
Jacobian matrix to determine stability, most of them have 
not provided any conclusion on stability when the Jacobian 
matrix has an eigenvalue at the origin of the complex plane. 
While the extinction of some species can be predicted by 
investigating the stability of equilibria with some zero 
component, stability of such equilibria has not been 
determined in [2-12, 15-18] since the Jacobian has an 
eigenvalue at the origin. 

In order to analyze stability for such cases, an 
appropriate Lyapunov function should be constructed as in 
[24], or some other nonlinear stability theory needs to be 
employed [25]. Even though Lyapunov stability theory and 
LaSalle’s invariance principle can be employed to 
determine stability [26], it is rather difficult and quite 
involved to construct an appropriate Lyapunov function. 
An alternative method may be to study the stability of 
reduced system by invoking the center manifold theory [26, 
27]. However, the verification procedure is not convenient 
in general, because a solution to the partial differential 
equation for the center manifold needs to be obtained. To 
avoid the difficulty in solving the partial differential 
equation, the authors have presented in [28] an alternative 
technique under a certain assumption of the Jacobian 

† Corresponding Author: Dept. of Electrical Engineering, Soongsil 
University, Korea. (nhjo@ssu.ac.kr) 

*  Dept. of Electrical Engineering, Soongsil University, Korea. 
**  School of Electrical Engineering, Seoul National University, Korea. 
*** Dept. of Electrical Engineering, Myongji University, Korea. 
Received: November 8, 2012; Accepted: April 5, 2013 

ISSN(Print)  1975-0102
ISSN(Online) 2093-7423



Joo-Won Lee, Nam Hoon Jo, Hyungbo Shim and Young Ik Son 

 1531

structure. 
In this paper, we extend the result of [28], and, from the 

extension, a variety of ecological systems are investigated 
about their stability. The motivation of this research lies in 
the observation that there might exist a boundary 
equilibrium that attracts all trajectories starting in the 
positive orthant although it is not stable in the usual sense. 
A condition is presented for the equilibrium to attract all 
trajectories that reside in the positive orthant and near the 
equilibrium (even though it may not attract those 
trajectories outside the positive orthant). The proposed 
condition can deal with the case to which the technique of 
[28] is not applicable (motivated by the models in [6, 9]). 
We also extend the applicability of the previous technique 
by relaxing the assumption on the Jacobian structure. To 
show the effectiveness of the proposed method, we apply 
the proposed condition to inspect the stability of several 
different predator-prey models [6, 8, 9] and an HIV infec-
tion model [17]. Although the authors of [6, 8, 9, 17] have 
discussed the stability of various equilibria, they have not 
determined the stability of boundary equilibria when one of 
eigenvalues of the Jacobian is zero. Moverover, the result 
of [28] cannot be used for [6, 9], either. In contrast to those 
previous results, the proposed method can determine the 
stability in such singular cases. 

The paper is organized as follows: Section II recalls the 
concept of stability with respect to the positive orthant and 
presents a simple condition for checking the stability of 
boundary equilibrium. In Section III, we apply the proposed 
method to several predator-prey models and an HIV 
infection model to show the effectiveness of the proposed 
method. Finally, some concluding remarks are given in 
Section IV. 

 
Notations: A function is said to be of class kC  if it is 

continuously differentiable k  times. For a vector x  and a 
matrix A , the i-th component of x  and the i-th row of A  
are denoted by ( )ix  and ( )iA , respectively, and when there 

is no confusion, ( )ix is abbreviated to ix . For a matrix A , 
TA  denotes a transpose of the matrix A . We denote by 

ke  the column vector [ ]0 0 0 1 0 0 T" "  with the entry 1 
in the k-th place. The elementary matrix obtained by 
interchanging the first and k-th rows of identity matrix is 
denoted by kE . The n n×  identity matrix and the 1r×  
zero vector are denoted by nI  and 0r , respectively, and 
when there is no confusion, 0r  is abbreviated to 0 . When 
all eigenvalues of a matrix A  have negative real parts, A  
is called a Hurwitz matrix. The maximum and the minimum 
eigenvalue of matrix A  are represented by ( )max Aλ  

and ( )min Aλ , respectively. For some 0r >  and 0
nx ∈\ , 

( ) { }0 0, ,nB x r x x x r= ∈ − <\  where x  stands for 

the Euclidean norm of a vector .x  For a vector ,x  we write 

0x >>  and 0x ≥≥  to indicate that every component of 
x  is positive and nonnegative, respectively. Let 

{ }: 0n nx x+ = ∈ ≥≥\ \  and { }: 0 .n nx x+ = ∈ ≥≥\ \ The 
order of magnitude notation ο  is used as follows: we say 
( ) ( )( )f x g x= ο if, for each 0,>ε  there exists 0>δ  

such that ( ) ( )f x g x≤ ε for .x < δ  A set M  is said to 

be a positively invariant set for the system ( )x f x=�  if the 

solution ( )x t  satisfies ( ) ( )0 , 0.x M x t M t∈ ⇒ ∈ ∀ ≥  
 
 

2. Stability Condition for Positive  
Nonlinear Systems 

 
In this paper, we consider a class of nonlinear system in 

the absence of an input ,u  that is, so-called unforced 
system  

 
 ( ), nx f x x += ∈� \   (1) 

 
where : n nf →\ \  is assumed to be 3C  and n

+\  is 
assumed to be a positively invariant set for system (1). We 
also assume that there exists an isolated equilibrium *x  
that is located on the boundary of n

+\  and satisfies the 
following assumption. 

 

Assumption JS (Jacobian Structure): Suppose that the 

Jacobian matrix at ( )* *, : ,fx A x
x
∂

=
∂

 has one eigenvalue at  
the origin and all others with negative real parts. Moreover, 
there exist a nonsingular matrix M  and an integer k  
(1 k n≤ ≤ ) such that ( ) 0kM ≥≥  and 

 
 *

( )( ) 0kMx =  (2) 
 

and 
 
 1

( )( ) 0 .T
k nMAM − =   (3) 

 
Remark 1: Usually, M  is chosen as an identity matrix, 

for which (2) and (3) become 
 

 
( )

*

*

0,

0 .

k

k T
n

x
f

x
x

=

∂
=

∂

 (4) 

 
However, an introduction of the matrix M  allows a 

larger class of systems to satisfy Assumption JS. In fact, as 
will be illustrated in Section 3.4., the HIV infection model 
of [17] does not satisfy (4) but assumption JS (if M  is 
chosen as an appropriate matrix). 

Although Assumption JS seems to be quite restrictive at 
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first glance, it is not. In fact, the class of systems under 
consideration includes the following typical form [2-11, 14, 
15, 19, 20], which often arises in various biological 
systems: 

 

( )

( ) ( )

( )

, 1 1,

,

, 1 .

i i

k k k k

i i

x f x i k

x f x x f x

x f x k i n

= ≤ ≤ −

= =

= + ≤ ≤

�
#

�
#

�

  (5) 

 
Here, we assume that the equilibrium of our interest 

satisfies that  
 

 * 0kx =  and ( )* 0.kf x =  (6) 
 
It is easily seen from (6) that the class of systems (5) 

satisfies Assumption JS. However, it should be noted that 
not all systems satisfying Assumption JS can be written as 
in (5). (As a matter of fact, the HIV infection model of [17] 
is not of the form (5), but satisfies Assumption JS.) 

To illustrate the basic concept of the proposed method, 
consider the basic 2-species Lotka-Volterra competition 
model [2]: 

 

 
(1 ),
(1 ).

x x x y
y y y x
= − −
= − −

�
�  (7) 

 
The system (7) has several equilibria, but we are 

interested in the stability of equilibrium (0, 1). The 
Jacobian matrix at (0, 1) is computed as 

 

 
0 0

,
1 1

A
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
 

which has eigenvalues 0 and 1, and stability of (0, 1) is not 
determined. In order to see what is going on in this case, 
we check the phase plane1) in Fig. 1. It is seen that all 
trajectories starting from initial conditions in 2

+\  
converge to the equilibrium (0, 1), while those starting 
outside 2

+\  do not converge to (0, 1). Thus, this 
equilibrium is not stable in the usual sense. However, if we 
restrict our interest to initial conditions in 2

+\  (the shaded 
region in Fig. 1), we may say that the equilibrium (0, 1) is 
asymptotically stable with respect to 2

+\  since it is 
attracting all trajectories in 2 .+\  

 
Definition 1: The equilibrium point *x  is locally stable 

with respect to (w.r.t.) the set n
+\  if, for each 0<ε , there 

exists ( ) 0>δ ε  such that 
 

    ( ) ( ) ( ) ( )* *0 , , .n nx B x x t B x+ +∈ ⇒ ∈∩\ ∩\δ ε  
 
Moreover, it is locally asymptotically stable w.r.t. n

+\  if 
it is stable w.r.t. n

+\  and δ  can be chosen such that 
 

    ( ) ( ) ( )*0 , lim 0.n
t

x B x x t+ →∞
∈ ⇒ =∩\δ  

 
Now, we provide a simple condition for the stability w.r.t. 
n
+\  that does not require the existence of an appropriate 

Lyapunov function. From Assumption JS, we obtain 
 

    ( ) [ ]1( ) 0 0 0 ,kMAM − = "  
 

which implies 
 

 ( ) 11

21 2

0 0
,k kE MAM E

A A
−−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  (8) 

 
for some matrix ( )1 1

21
nA − ×∈\ and ( ) ( )1 1

2 .n nA − × −∈\  
(Recall that premultiplication and postmultiplication by an 
elementary matrix results in elementary row and column 
operation, respectively.) Note that 2A  is a Hurwitz matrix 
because of Assumption JS. 

 
Lemma 1: Under Assumption JS, the matrix 
 

 1
2 21

1 0
: kT E M

A A I−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 
Satisfies 
 

                                                           
1) In this paper, all the phase portraits were calculated using the 
software PPlane6 [29]. 

 
Fig. 1. Phase portrait of system (7). In this figure, solid red

circles indicate equilibria of system (7). Although 
phase trajectories starting from initial conditions
outside 2

+\  do not converge to the equilibrium (0, 
1), those trajectories starting from 2

+\  (shaded 
region) converge to (0, 1). 
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 1

2

0 0
.

0
TAT

A
−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  (9) 

 
Proof: Let 
 

 
1

21

1 0
.T

A A I−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 
Then, we obtain kT TE M=  and 
 

 1
1

21

1 0
.T

A A I
−

−

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (10) 

 
Moreover, it follows from (8) and (10) that 
 

 ( )11 1 1

2

0 0
,

0k kE MAM E T T
A

−− − −
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
which results in 

 

 ( ) ( ) 1
1 1

2

0 0
.

0k kTAT TE MAM TE
A

−
− −

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 

 
With matrix T  of Lemma 1, let 1

1 : ng →\ \  and 
2 :g 1n n−→\ \  be functions 
 

 
( )
( )

11 1 2 1 *

22 1 2 22

0,
: ,

,
zg z z

T f T x
z A zg z z

−
⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⋅ + −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦
 (11) 

 
where [ ]2 32 , , , .T

nz z z z= " In addition, for nonnegative 
integers ,m k  and 12 , , ,ki i n≤ ≤"  let 

 

 
1

1

1
1

1[ , ]
, ,

1
1

1

(0,0 ), 0,

(0,0 ), 1, 2, .
k

k

m

nm
m k

i i m k

nm
i i

g
k

z
P

g
k

z z z

−

+

−

∂⎧ =⎪ ∂⎪= ⎨ ∂⎪ =
⎪∂ ∂ ∂⎩

"

"
"

 (12) 

 
Theorem 1: For an equilibrium *x  of system (1), 

suppose that *x  and (1) satisfy Assumption JS. Then, we 
have the followings: 

(Case 1) *x  is locally asymptotically stable w. r. t. n
+\  

(respectively, unstable) if [ ]2,0 0P <  (respectively, 
[ ]2,0 0P > ). 

(Case 2) Suppose that [ ]2,0 0.P =  Then, *x  is locally 
asymptotically stable (respectively, unstable) if 
 

 [1,1] [2][3,0]
2

6 0
n

i ii
P P

=
+ <∑ π  

 

(respectively, [1, 1] [2][3, 0]
2

6 0
n

i ii
P P π

=
+ >∑ ), where 

[ ] [ ]22
2 ,⎡= ⎣π π [ ] ( )

2
2

2
1

2 1
2

1, 0,0 .
2

T

n
g

z
A− ∂

∂

⎡ ⎤⎤ = − ⎢ ⎥⎦ ⎣ ⎦
" π  

 
Remark 2: At first glance, it may seem rather 

complicated to apply Theorem 1. But, as will be illustrated 
in Section 3, the application of the theorem is not difficult 
since it only requires numerical computations. Moreover, 

when ,M I=  it is convenient to use [ ],0 ,
m

m
m

P
s

∂
=
∂
ψ

 where 

 

 ( ) ( )
*

1
2 21

1
: .kks f E s x

A A−

⎛ ⎞⎡ ⎤
= +⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

ψ  (13) 

 
Proof: (Case 1): Let nx +∈\  and 
 

 *: .x x x= −  
 
Then, we have 
 

 ( ) ( )* :x f x x f x= + =�  (14) 
and 

 

 ( ) *0 ( ) .f f x A
x x
∂ ∂

= =
∂ ∂

 (15) 

 
Since ( )f x is 3C and ( )0 0,f =  (14) can be repre-

sented as 
 

( ) ( ) ( ) ( ) ( ). .0 0 0 H O
f f fx x f x x x f x
x x x

⎡ ⎤∂ ∂ ∂
= + − = +⎢ ⎥∂ ∂ ∂⎣ ⎦
�  

 
where 

 

 ( ) ( ). . : ( ) 0H O
ff x f x x
x
∂

= −
∂

 

 
is 3C  and 

 

 ( ) ( ). .
. . 0 0, 0 0.H O

H O
f

f
x

∂
= =

∂
 

 
With matrix T of Lemma 1, the change of variables 
 

 1 1 1
1 2

2

: ; ; n
z

z Tx z z
z

−
⎡ ⎤

= = ∈ ∈⎢ ⎥
⎣ ⎦

\ \  

 
transforms (14) into 

 
 1 1( ) ( ),z T f T z TAT z g z− −= = +�  
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where 
 

 1
. .( ) : ( ).H Og z T f T z−=  

 
From (9), the system is rewritten as 
 

 1 1 1 2

2 2 12 2 2

( , ),
( , ),

z g z z
z A z g z z
=

= +

�
�  (16) 

 
where 1g  and 2g  are 3C functions such that g =  
[ ]1 2, TTg g  and, for 1, 2,i =  

 

 ( ) ( ) ( )
1 2

0,0 0; 0,0 0; 0,0 0.i i
i

g g
g

z z
∂ ∂

= = =
∂ ∂  (17) 

 
Thus, ( ) ( )1 1 1 12, , , ng z z g z z= "  can be written as 
 

( )

( )

1 1

2
1

1 1

3
1 3

1 2
1 1 1

( , , )

1 0
2!

1 0 ( , )
3!

n

n n

i j
i ji j

n n n

i j k
i j ki j k

g z z

g
z z

z z

g
z z z z z

z z z

= =

= = =

⎡ ⎤∂
= ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤∂

+ +⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

∑∑

∑∑∑

"

& &ο

 

[ ]
1 21 2

1 2

1 2 31 2 3

1 2 3

[1,1] [0,2]2[2,0]
1 1 ,

2 2 2

[2,1] [1,2]33,0 2
1 1 1,

2 2 2

[0,3] 3
1, , 2

2 2 2

1 2
2

1 3 3
6

( , ).

n n n

i i i j i j
i i j

n n n

i i i ii i
i i i

n n n

i i ii i i
i i i

P z P z z P z z

P z P z z P z z z

P z z z z z

= = =

= = =

= = =

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛
⎜+ + +
⎜
⎝

⎞
⎟+ +
⎟
⎠

∑ ∑∑

∑ ∑ ∑

∑∑∑ & &ο

 

 
Moreover, according to center manifold theorem (e.g., 

see Theorem 8.1 of [26]), there exists 0>δ  and a 1C  
function 1 1: ,n−→\ \π  defined for all 1 1,z < δ  such that 

( ) ( ) ( )1 2 1 12 : , ,
T

nz z z z= = ⎡ ⎤⎣ ⎦"π π π  is a center manifold 
for (16), i.e., 

 

 
( )( ) ( ) ( )( )

( )

1 2 1 2 1 1

1 1 1
1

: ,

( , ) 0

z A z g z z

g z z
z

= +

∂
− =
∂

π π π

π π
 (18) 

 
and 

 

 ( ) ( )
1

0 0; 0 0.
z
∂

= =
∂
ππ  (19) 

 
From (19), π  can be written as 
 

 ( ) ( )22
1 1 1 ,z z z= +π π ο  (20) 

for some [ ] ( 1) 1
2 , , T n

n
− ×= ∈" \π π π . Therefore, we get  

 
 ( ) ( )( ) ( )32

1 1 2 1 1 2 1 3 1 1 1, , , ,ng z z z c z c z g z= − − + �"π π  (21) 
 

where [ ] [ ] [ ]( )2,0 3,0 1,1
2 3 2

1 1: , : 6 ,
2 6

n

ii
c P c P P

=
= − = − + ∑ π   

and ( )3
1 1 1( ) : .g z z=� ο  

Now, another change of variables 
 

 ( )
11

12

:
zz

z zw
⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦π  

 
transforms (16) into 

 
 ( )( )1 1 1 1, ,z g z w z= +� π   (22) 

 
( )( ) ( )( )

( )( )
2 1 2 1 1

1 1 1
1

,

, .

w A w z g z w z

g z w z
z

= + + +

∂
− +
∂

� π π

π π
 (23) 

 
Subtracting (21) into (22) yields 
 

( )( )
( )( ) ( )( ) ( )( )

( )
( )( ) ( )( )

1 1 1 1

1 1 1 1 1 1 1 1 1

32
2 1 3 1 1 1

1 1 1 1 1 1

,

, , ,

, ,

z g z w z

g z z g z w z g z z

c z c z g z

g z w z g z z

= +

⎡ ⎤= + + −⎣ ⎦
= − − +

⎡ ⎤+ + −⎣ ⎦

�

�

π

π π π

π π

 

 
and subtracting (18) from (23) gives 

 

 
( )( ) ( )( )

( )( ) ( )( )
2 2 1 1 2 1 1

1 1 1 1 1 1
1

, ,

, , .

w A w g z w z g z z

g z w z g z z
z

= + + −

∂ ⎡ ⎤− + −⎣ ⎦∂

� π π

π π π
 

 
Hence, we can rewrite (22) and (23) as 
 

 
( ) ( )

( )

32
1 2 1 3 1 1 1 1 1

2 2 1

, ,

, ,

z c z c z g z N z w

w A w N z w

= − − + +

= +

��
�

 (24) 

 
where 

 

 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )

1 1 1 1 1 1 1 1

2 1 2 1 1 2 1 1

1 1 1
1

, , , ,

, , ,

, .

N z w g z w z g z z

N z w g z w z g z z

z N z w
z

= + −

= + −

∂
−
∂

π π

π π

π
 

 
It is easily seen that 1N  and 2N  are 2C and 
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 ( )1,0 0, 1, 2,iN z i= =  (25) 
 

and, by virtue of (17), 
 

 ( )0,0 0, 1, 2.iN
i

w
∂

= =
∂

 (26) 

 
Thus, there exists 2 0>δ  such that [ ]1 2, TTz w < δ  

implies 
 

 ( )1, , 1, 2,i iN z w k w i≤ =  
 

where 1k  and 2k  can be made arbitrary small by 
choosing 2δ  small enough. 

Now, suppose that [ ]2,0 0P <  and consider a Lyapunov 
function candidate for full system (24) 

 
 ( ) 2

1 0, ,TV z w z w P w= +  
 

where 0P  is the positive definite solution of 
 

 0 2 2 0 .TP A A P I+ = −  
 
Then, there exists ( )3 1 2min ,<δ δ δ such that 

[ ]1 3, TTz w < δ  implies 

 

 

( )( )

( )
( )
( )

3 3
1 3 1 1 1 2 1

max 0
1 1 2

max 0 max 0

2 ,

1 2 0.
4

z c z g z c z

P
k z k

P P

− + ≤

− − >

�

λ
λ λ

 

 
Thus, the derivative of V  along the trajectories of the 

system (24) is given by 
 

( ) ( )

( ) ( )

( )
( )
( )

( ) ( )

( )
( )

( )

32
1 2 1 3 1 1 1 1 1

0 2 2 0 0 2 1
0

3
2 1 1 1

max 0

max 0
2

min 0

3
2 1 1 1

max 0 max 0

max 0
2

min 0

3
2 1

max 0

2 ,

1 2 ,
2

2
2

1 2
4 4

.
4

TT T
T

V z c z C z g z N z w

w P A A P w w P N z w
w P w

w
c z k z w

P

P
k w

P

w
c z k z

P P

P
k w

P

w
c z

P

= − − + +⎡ ⎤⎣ ⎦

⎡ ⎤+ + +⎣ ⎦

≤ − + −

+

⎡
= − − − −⎢

⎢⎣
⎤

− ⎥
⎥⎦

≤ − −

� �

λ

λ
λ

λ λ

λ
λ

λ

 

 

On the other hand, from Lemma 1, we obtain 
 

 ( )( ) ( )1 ( )1
,T

k k kz TE Mx e Mx M x= = =  
 
which implies that 1 0z ≥  since nx +∈\  and ( ) 0.kM ≥≥  
Therefore, using the standard Lyapunov stability techniques, 
it can be shown that ( ) ( )( )1 , 0z t w t →  as .t →∞  Since 
( )0 0,=π  it follows that ( ) ( )( )1 2, 0z t z t →  as t →∞  

and as a consequence, ( ) *x t x→  as t →∞  for 
( ) ( )*0 ,x B x∈ δ  n

+∩ \  for some 0.>δ  
On the contrary, suppose that [ ]2,0 0.P >  For the 

convenience, system (24) is rewritten as 
 

 
( ) ( )32

1 2 1 3 1 1 1 1 1

2 2 1

, ,
( , ),

z c z c z g z N z w
w A w N z w
= − − + +

= +

��
�  (27) 

 
in which the origin corresponds to the equilibrium *x  of 
(1). For given 0 0z > , let ( )z t  be the solution of 1z =�  

( )32
2 1 3 1 1 1c z c z g z− − + �  with ( ) 00z z=  Then, ( )z t  cannot 

be kept within a small neighborhood of the origin because 
( )2 2

1 2 1 1z c z z= − +� ο  and [ ]2,0
2 0.C P− = >  (In fact, 0z >�  

when ( )z t  is positive and sufficiently small.) But, 
observe that ( )( ), 0z t  is also a solution of system (27). 
This implies that the origin is unstable since some initial 
condition ( ), 0z  with 0z >  moves away from the origin. 
Therefore, *x  is unstable. 

 
(Case 2): From (17), ( )2 1 2,g z z  can be written as 
 

( ) ( )

( )

2
2 2

2 1 1 1 12 222 2 222
1

2
1 2

1, 0,0
2

, ,

Tg
g z z z z C z z C z

z

z z

∂
= + +

∂

+ο
 

 
where 12C  and 22C  are some matrices of appropriate 
dimensions. Since 

 

 
( ) ( ) ( )

( ) ( )

2 2 2 2
1 2 1 2 1 1 1 1 1 1

22 2
2 1 12

1

, 2 ,

1 0,0 ,
2

N z A z g z z z g z z

g
A z z

z

= + −

⎡ ⎤∂
= + +⎢ ⎥∂⎣ ⎦

π π π π π

π ο
 

 

letting [ ] ( )
2

22 1
2 2

1

1: 0, 0
2

g
A

z
− ∂

= −
∂

π  yields  

 
[ ]( ) ( )22 2

1 1 ,N z z=π ο  ( ) [ ] ( )22 2
1 1 1 .z z z= +π π ο  

 

Thus, since [ ]2,0
2

1 0
2

c P= − = , we get from (21) 

 

 
( ) ( )( ) ( ) ( )

( )
3 3

1 1 2 1 1 3 1 1 1 1

3 3
3 1 1

, , ,

.
ng z z z c z g z z

c z z

= − + +

= − +

�"π π ο

ο
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Now, suppose that [ ] [ ] [ ]1, 1 23, 0
2

6 0,
n

i ii
P P

=
+ <∑ π  i.e., 

3 0.c >  Then, with the same Lyapunov function candidate 
as in the proof of (Case 1), there exists a 4 0>δ  such that 

[ ]1 4, TTz w < δ  leads to 

 

 ( ) ( )
4

1 3 1
max

1, .
4

V z w c z w
P

≤ − −�
λ  (28) 

 
This implies that there exists a 0>δ  such that 
( ) *x t x→  as t →∞  for ( ) ( )*0 , .x B x∈ δ  
 
 

3. Applications to Biological Systems 
 
To show the effectiveness of the proposed method we 

apply our result to several predator-prey models and an 
HIV model in the ecological literatures. 

 
3.1 A predator-prey model with hawk and dove tactics 

 
In this subsection, we consider the predator-prey model 

that incorporates individual behavior of the predators [6]. It 
is assumed that individual predators can use two tactics 
when fighting with other predators to keep a captured prey, 
the hawk and dove tactics. While the hawk fights in any 
case, the dove is never aggressive. When a hawk meets a 
dove, there is no fighting and the hawk keeps the prey and 
dove gets nothing. When two hawks encounter, they fight 
and both of them suffer injuries. After the fighting the 
winner keeps the prey. When two doves encounter, there is 
no fighting and they share the prey. The model consists of 
two parts: a fast part that represents the change of tactics of 
predators and a slow part that expresses the predator-prey 
interactions. Let ,n ,HP  and DP  be the population of prey, 
hawk predator, and dove predator, respectively. Then, the 
system model is given by [6] 

 

 
( )

( )

1 ,

1 ,
2

H D

H
H H H H

dn nrn an p p
dt K
dp G Cp p x Gy p
dt

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

⎡ − ⎤⎛ ⎞= Δ − Δ + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
μ α

ε

 

( )1 ,
2

D
D D D D

dp Gp p p
dt

⎡ ⎤= Δ −Δ + +⎢ ⎥⎣ ⎦
μ α

ε
 (29) 

 
where 

 

 : , : ,H D

H D H D

p p
x y

p p p p
= =

+ +
 

 
and 

 

 : , : ,
2 2H D

G C Gx Gy y−
Δ = + Δ =  

 2 2:
2 2

G C Gx Gxy y−
Δ = + +  

 
with .G an=  Taking advantage of the two-time scales, the 
complete system has been studied from the system model  
of reduced dimension. When ,cn

a
<  the aggregated 

model is given by [6] 
 

 
2

2

1 ,

,
2 2

nn rn anp
K

a ap p np n p
C

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

= − + −

�

� α αμ
  (30) 

 
where p  represents the total population of predators, i.e. 

.H Dp p p= +  The system (30) has five equilibria, ( )1 0,0 ,E  

( ) ( ) ( )* * * *
2 3 1 1 4 2 2,0 , , , , ,E k E n p E n p and ( )* *

5 3 4, ,E n n where 

*
1n = ( )2

22

8

2
,C

a

a C C

a

−
−

α α μ

α
 *

2n = *
3

2
,

C

a
n +

=
μ α

α
 and *

ip =  

*

1 , 1, 2,3.inr

a K
i⎛ ⎞− =⎜ ⎟

⎝ ⎠
 

We first consider the case where 8 .C >α μ It has been 
shown in [6] that, when 8 ,C >α μ  2E  is stable 
(respectively, unstable) if *

1K n<  or * *
2 3n K n< <  

(respectively, * *
1 2n K n< < ). But, the stability of 2E  has 

not been determined when *
1K n=  or *

2 .K n=  Now, using 
the proposed theorem, we are going to determine the 
stability of 2E  for such cases. Since the Jacobian matrix at 

2E  when *
1K n=  is computed as 

 

,
0 0
r aK

A
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
Assumption JS is satisfied with 2M I=  and 2.k =  

More-over, with ( )2
1 : 8 ,D C a a C C= − −α α α μ  we obtain 

 

( )
2

1 13 2
2

1 ,
8 4 2

D DaKs s s
Cr C r

⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

ψ
α

 

 
which leads to 
 

 [ ] ( )
2

12,0
2

10 0,
2

DaKP
s C r

∂ ⎛ ⎞= = − + <⎜ ⎟∂ ⎝ ⎠

ψ
 

 

since *
1

2
.C

a
K n= < Therefore, 2E  is locally asymptotically 

stable w.r.t. 2
+\  and, as a result, the predator goes to 

extinction when *
1 .K n=  On the other hand, for the case 
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where *
2 ,K n=  we can show that 

 

 [ ] ( )
2

12,0
2

10 0,
2

DaKP
s C r

∂ ⎛ ⎞= = − + >⎜ ⎟∂ ⎝ ⎠

ψ
 

 
where ( )2

2 8 .D C a a C C= + −α α α μ  Therefore, 2E is 
un-stable, and hence predator and prey coexist when 

*
2.K n=  

Next, we consider the stability of 2E  when 8C =α μ   

for which * *
1 2 .

2
Cn n
a

= =  Suppose that we need to check  
the stability of 2E  when *

1 .K n=  Again, the stability has 
not been determined in [6] since the Jacobian has one 
eigenvalue at the origin. It should be also noted that the 
result of [28] cannot be used to determine the stability, 
while Theorem 1 can be used. In contrast to the case where 

8 ,C >α μ  we need to rely on (Case 2) of Theorem 1 since 
8C =α μ  implies [ ]2,0 0.p =  Since 

 

[ ] [ ] ( )
21 22

2
1

3

1 0,0
2
(2 )( 2 ) 0,

8

g
r

z
C r a K C aK

r K

− ⎡ ⎤∂
= − − ⎢ ⎥∂⎣ ⎦

+ − +
= =

π

α
 

And 
 

 
[ ]

[ ]

2
3,0

2

2
1,1

3 ,
4

,
2

a CP
r

a a KP
C

= −

= −

α

α α
 

 
we obtain 

 

 [ ] [ ] [ ]
21,13,0 2

2 2

36 .
4
a CP P

r
+ = −

απ   (31) 

 
Thus, when 8C =α μ  and ,

2
CK
a

=  2E  is locally 

asymptotically stable w.r.t. 2 .+\  
 

3.2 A partial-dependent predator-prey system 
 
In this subsection, we consider a partial-dependent 

predator-prey system that has been discussed in [9]. The 
model is given by 

 

 1

1

1 ,
1

1 ,
1

x xyx rx
K x
y xyy sy
L x

⎛ ⎞= − −⎜ ⎟ +⎝ ⎠

⎛ ⎞= − +⎜ ⎟ +⎝ ⎠

�

�

α
α

β
α

 (32) 

 
where , , , , , ,r s K L α β and 1α are some positive 
constants. 

The state variables ,x and y  represent the population 
density of prey and predator, respectively. The system (32) 
has several equilibria such as ( )0,0 ,OE ( ),0 ,CE K  and so 
on. It has been shown in [9] that the system (32) 
experiences a saddle-node bifurcation at the equilibrium 

PE  when r L=α  and 1 0,Ks s K− − ≠α β  and a 
pitchfork bifurcation at the equilibrium PE  when r L=α  
and 1 0.Ks s K− − =α β  Although it has been shown in [9] 
that PE  is a stable node (respectively, a saddle) r L< α  if 
(respectively, r L>α ), the stability of PE  has not been 
determined when .r L=α  Now, using the proposed 
theorem, we are going to determine the stability of PE  
when .r L=α  The Jacobian matrix at PE  is computed as 

 

 
0 0 0

,
r L

A
L s L s

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

α
β β

 (33) 

 
which shows that Assumption JS is satisfied with 2M I=  
and 1.K =  Moreover, we obtain 

 

 ( ) ( )1

1 ,
1

u L L
u su ru u
K u

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎝ ⎠= − −⎜ ⎟ +⎝ ⎠

β

ψ α
α

 

 
so that 

 

 [ ] ( ) ( )2
12,0

2
0 2 .

L Ks s K
P

u Ks
− −∂

= =
∂

α α βψ  (34) 

 
Therefore, PE is locally asymptotically stable 

(respectively, unstable) w.r.t. 2
+\  if 1 0Ks s K− − <α β  

(respectively, 1 0Ks s K− − >α β ).(See Fig. 2 and Fig. 3 

 
Fig. 2. Phase portrait of system (32) with 1, 2,K= =α

3,s = 2, 1, 2,L r= = =β and 1 1 2,=α for which 
r L=α  and 1 0.Ks s K− − <α β In this figure, solid 
red circles indicate equilibria of system (32).
Although not all trajectories move toward to

( )0, 2 ,PE  all trajectories residing in 2
+\  (shaded 

region) converge to .PE  
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for each cases.) 
When 1 0Ks s K− − =α β  as well as ,r L=α  the 

determination of stability of PE  becomes more 
complicated. Although the stability of PE  cannot be 
determined by the result of [28], Theorem 1 (Case 2) can 
be applied. To this end, we compute 

 

 

[ ] [ ] ( )

( )

21 22
2
1

2

1 0,0
2

,

g
s

z

L K s
s K

− ⎡ ⎤∂
= − − ⎢ ⎥∂⎣ ⎦

+
= −

π

β β
 

 
And 
 

 
[ ] ( )

[ ]

3,0
2

1,1
2

6 ,

,

L K s
P

sK
P

+
= −

= −

α β

α
 

 
which imply that 

 

 [ ] [ ] [ ] ( )1,13,0 2 2 2 2
2 2 2

6 6 .LP P s K
s K

+ = − −
απ β   (35) 

 
Thus, when r L=α  and 1 0,Ks s K− − =α β PE  is 

locally asymptotically stable (respectively, unstable) if 
s K> β  (respectively, s K< β ). (See Fig. 4 and Fig. 5 for 
each cases.) 

 
3.3 A predator-prey model with habitat destruction 

 
In this subsection, we consider the predator-prey model 

that has been discussed in [8], which was developed to 
study the consequences of habitat destruction. The model is 
given by 

 

 
( )
( ) ( )
1 ,

1 1 ,
x x

y y

x c x x D e x xy

y c y y D e y y x

= − − − −

= − − − − −

�

�
μ

φ
 (36) 

 
where , , , , , ,x x y yc e c eμ φ and D  are some positive 
constants. The state variables x and y represent the 
proportion of patches occupied by prey and predators, 
respectively.  

Four possible equilibria exist for the model (36):  

( )0 0,0 ,E 1 21 ,0 , 0,1 ,yx

x y

ee

c c
E D E D

+⎛ ⎞⎛ ⎞
− − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

φ
 and ( )* *

3 , ,E x y   

where ( )( ) ( )* 1 1
x y

y x y x y
c c

x c c D c e e
+

⎡ ⎤= − − − + +⎣ ⎦μφ
μ μ φ  and 

( )* 1 1 .
x y

x y x x y x
c c

y c c D c D c e e
+

⎡ ⎤= − − − −⎣ ⎦μφ
φ φ  It has 

 

Fig. 3. Phase portrait of system (32) with 1, 8,K= =α
3, 2, 1, 2,s L rβ= = = = and 1 1 2,=α  for which 

r L=α  and 1 0.Ks s K− − >α β All trajectories
starting from initial conditions in 2

+\ move away
from PE . 

 

 
Fig. 4. Phase portrait of system (32) with 1, 3,K= =α

6, 2, 1, 2,s L rβ= = = = and 1 1 2,=α  for which
1, 0,r L Ks s Kα α β= − − =  and .s K< β  All 

trajectories move toward to ( )0,2 ,PE which 
implies that PE is asymptotically stable in the 
usual sense. 

 

 
Fig. 5. Phase portrait of system (32) with 1, 6,K= =α

3, 2, 1, 2,s L rβ= = = =  and 1 1 2,=α for which
,r L=α 1 0,Ks s K− − =α β  and .s K< β  Most

trajectories move away from ( )0,PE L in the 
direction of unstable manifold, which implies that 

PE is unstable. 
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been shown in [8] that 1E  is stable (respectively, 
unstable) if xD D>  (respectively, xD D< ), where :xD =  

( )
.x y x y x

x y

c c c e e
c c
− −

+

φ
φ

 However, when xD D= , the stability 

of 1E  has not been determined since the Jacobian matrix 
has one eigenvalue at the origin.  

Now, using the proposed theorem, we are going to show 
that 1E  is indeed stable when .xD D=  The Jacobian 
matrix at 1E  is computed as 

 

 1 1 ,
0 0
xc x x

A
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

μ
 (37) 

 
from which Assumption JS is satisfied with 2M I= and 

2.k =  Moreover, we obtain 
 

 1
2 2

1 1

0 0
,

x

E AE
x c x

−
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦μ
 

 
which implies that  

 

 2 1
2 21

1 11
.

0

x x

x x x

e e
D s D

c c cE s
A A

s
−

⎡ ⎤ ⎡ ⎤− − − + − −⎡ ⎤ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

μ
 

 
Thus, we get 
 

 ( ) 2 ,y x

x

c c
s s

c
+

= −
μφ

ψ  

 
which leads to  

 

 [ ] ( )
2

2,0
2

0 0.P
s

∂
= <
∂
ψ

 

 
Therefore, 1E  is locally asymptotically stable w.r.t. 2

+\  
when .xD D=  

 
3.4 HIV dynamics model 

 
In this subsection, we consider the HIV model that has 

been discussed in [17], which depicts the interaction 
between T cells and virus particles. The model is given by 

 

 
( )

* *

*

,

,
,

T f T kVT

T T kVT
V V N T ikVT

β

γ β

= −

= − +

= − + −

�

�
�

 (38) 

 
where , , ,k β γ and N are some positive constants, i  
can be either 1 or 0, and f is a smooth function that 

satisfies 
 

 ( )( ) 0, 0 , 0,f T T T f T> ≤ < =  

 ( )' 0,f T < and ( ) 0, .f T T T< >  
 

The state variables *, ,T T and V  represent the 
population of uninfected T cells, productively infected T 
cells, and free virus particles, respectively. The system (38) 
has two equilibria, ( )0 ,0,0E T  and ( )*, , ,e e e eE T T V  

where ( )
,e

k N i
T

−
=

γ

( )
* ,e

e
V

N i
T

−
=

γ

β
 and 

( ) .e

e

e
f T

kT
V =  It 

has been shown in [17] that 0E is stable (respectively, 

unstable) if
( )

0 : 1kT N iR −
= <

γ
 (respectively, 0 1R > ). But, 

the stability of 0E  has not been determined when 0 1.R =  
Now, using the proposed theorem, we are going to 

determine the stability of 0E when 0 1,R =  that is, 
kTN=γ .kTi−  The Jacobian matrix, evaluated at 0 ,E  is  

 

( ) ( )' '0 0

0 0 ,
0 0

f T kT f T kT

A kT kT
N ikT N NkT

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥

= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

β β
β γ β

  

  (39) 
 

which shows that Assumption JS is not satisfied 
with 3.M I=  If we choose 

 

 
1 0 0

: 0 1 0 ,
0 1

M
N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
then 

 

 

( )'

1

0

0 ,
0 0 0

f T kT

MAM kT−

⎡ ⎤−
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

β  

 
from which Assumption JS is satisfied with 3.k =  With 
some computation, we obtain 

 

 [ ] ( )
( ) ( )

2 2
2,0

2
'

2 ,
k T N i

P
kTN f T

−
=

+

β

β
 

 
which is negative since ( )' 0f T <  and N  is typically 
large. Therefore, according to Theorem 1, 0E  is locally 
asymptotically stable w.r.t. 3 ,R+  which suggests that the 
virus population will decline and die out. 
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4. Conclusions 
 
We have proposed a simple test for checking local 

stability of an equilibrium that is located on the boundary 
of the positive orthant. While Laypunov’s indirect method 
based on the Jacobian linearization cannot draw any 
conclusion on the stability when the Jacobian matrix has an 
eigenvalue at the origin, the proposed method is able to 
determine the stability. Since our approach is based on the 
approximate solution to center manifold equation, it only 
guarantees the local result. To the contrary, if the global 
behavior needs to be studied, rather elaborate tools such as 
Lyapunov direct method or LaSalle’s invariance principle 
should be resorted to. Nonetheless, we believe that our 
results are quite attractive in that it requires just a simple 
algebraic computation but may provide a clue to the 
prediction of global behavior. One might think that phase 
portrait is sufficient to determine the stability. But, the 
phase portrait is hardly applicable to higher dimensional 
systems (e. g., n\  with 3n ≥ ), while the proposed 
method can be easily employed. Moreover, we believe that 
applying our result requires less time and effort than 
sketching a complete phase portrait. 
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