• Title/Summary/Keyword: Linearization Controller

Search Result 282, Processing Time 0.02 seconds

Output Feedback Stabilization of Non-Minimum phase Nonlinear Systems (비최소위상 비선형 시스템의 출력궤환 안정화)

  • 조남훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.977-983
    • /
    • 2003
  • An output feedback stabilizing controller far non-minimum phase nonlinear systems is presented. We first perform the standard input-output linearization of the system and then transform the zero dynamics into a special normal form in which the antistable part is not affected by the stable part and the antistable part is given in approximately linear form. Under the assumption that the nonlinear system satisfies the observability rank condition, we can design an observer f3r the extended system that is made of the augmentation of a chain of integrators. The proposed output feedback stabilizing controller can then be designed by combining the observer and the state feedback controller.

Tiltrotor Aircraft SCAS Design Using Neural Networks (신경회로망을 이용한 틸트로터 항공기 SCAS 설계)

  • Han, Kwang-Ho;Kim, Boo-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • This paper presents the design and evaluation of a tiltrotor attitude controller. The implemented response type of the command augumentation system is Attitude Command Attitude Hold. The controller architecture can alleviate the need for extensive gain scheduling and thus has the potential to reduce development time. The control algorithm is constructed using the feedback linearization technique. And an on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge tiltrotor aircraft dynamics is applied to augment the attitude control system. The use of Lyapunov stability analysis guarantees boundedness of the tracking error and network parameters. The performance of the controller is evaluated against ADS-33E criteria, using the nonlinear tiltrotor simulation code for Bell TR301 developed by KARI. (Korea Aerospace Research Institute)

Design and Analysis of a State Feedback Controller for a Chain of Integrators System under Measurement Noise (측정에러가 있는 적분기 시스템에서의 상태 궤환 제어기 설계 및 분석)

  • Youn, Jae-Seung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.969-974
    • /
    • 2010
  • In this paper, we propose a fault-tolerant controller for compensating measurement noise of feedback sensor. Because control systems operate via feedback sensor's signal, the measurement noise in sensor's signal results in performance degradation or even system failure. Therefore, control systems often demand on compensating measurement noise. Our controller is equipped with a compensator in order to reject or reduce the effect of measurement noise in feedback information. Our proposed method is verified via simulation and experiment for a Ball and Beam system.

LQ-Servo Design for Automatic Train Control of Urban Rail Vehicle (도시 철도 차량의 자동주행을 위한 LQ-서보 제어기의 설계)

  • Kim, Chang-Hyun;Kim, Yong;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1594-1601
    • /
    • 2014
  • In this paper, we propose the LQ servo control method for the automatic train control of urban rail vehicle. Structures of the conventional PID control and LQ servo controller are compared in order to demonstrate the simplicity of the proposed controller which doesn't have zeros of the closed loop systems. The energy consumption is dealt with as an object function to be minimized, which consists of the quadratic performance indices for optimal control with the input of the feedback linearization. The effectiveness of the proposed method is shown by the practical example, compared with the conventional PD controller.

Robust Control of a Grid Connected Three-Phase Two-Level Photovoltaic Inverter (3상 2레벨 계통연계형 태양광 인버터의 강인제어)

  • Ahn, Kyung-Pil;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.538-548
    • /
    • 2014
  • This study provides a robust control of a grid-connected three-phase two-level photo voltaic inverter. The introduced control method uses the cascade control strategy to regulate AC-side current and DC-link voltage. A robust controller with integration action is used for the inner-loop AC-side current control, which maximizes the convergence rate using a linear matrix inequality-based optimization design method and eliminates the offset error. The robust controller design method considers the parameter uncertainty set to accommodate parameter mismatch and un-modeled components in the inverter model. An outer-loop proportional-integral controller is used to regulate DC-link voltage with linearization of DC/AC relation. The proposed control strategy is applied to a grid-connected 100 kW photo voltaic inverter.

Nonlinear Control for A Robot Manipulator (로봇 매니퓰레이터에 대한 비선형 제어)

  • 이종용;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.12
    • /
    • pp.1333-1342
    • /
    • 1992
  • This paper deals with a robot manipulator having actuator which is described by equation $D(q)\ddot{q}=u-P(q\;\dot{q},\;\ddot{q})$ where u(t) is a control input. We employ two steps of controller design procedures. First, a global linearization is performed to yield a decoupled controllable linear system. Then a controller is designed for this linear system. We provide a rigorous analysis of the effect of uncertainty of the dynamics, which we study using robustness results in time domain based on a Lyapunov equation and the total stability theorem. Using this approach we simulate the performance of controller of a robot manipulator.

  • PDF

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

Nonlinear system control using neural network (신경회로망을 이용한 비선형 시스템 제어)

  • 성홍석;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.32-39
    • /
    • 1996
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with multilayer neural network. The multilayer neural netowrk can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate unknown nonlinear function on the nonlinear system by using of multilayer neural netowrk. The weights on the hidden layer of multilayer neural network are updated by gradient method. The weight-update rule on the output layer is derived to satisfy lyapunov stability. Also, we obtain secondary controller form deriving step. The global control system consists of controller using feedback linearization method and secondary controller is order to satisfy layapunov stability. The proposed control algorithm is verified through computer simulation.

  • PDF

Nonlinear Sliding mode Control of Overhead Crane System (천정 크레인 시스템의 비선형 슬라이딩 모드 제어)

  • Kim, Do-Woo;Yoon, Ji-Sup;Park, Byung-Suk;Yang, Hai-Won;Kim, Hong-Phil
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.526-529
    • /
    • 1998
  • In this paper, we proposed a nonlinear sliding mode controller to regulate the swinging angle of Overhead Crane System. Roughly speaking, the controller is designed to regulate an output(the swing angle) while providing internal stability. It is difficult to apply many of standard nonlinear control design techniques. In contrast to control that use a command generator and possibly a time-varying feedback, our control law is simple autonomous nonlinear controller. We analyze the stability of the closed-loop system using an $L_2$ Sliding surface conditions approach on a nonlinear feedback linearization of the system about the desired periodic orbit. One can easily extend this approach to analyze the robustness of the control system with respect to disturbances and parameter variations.

  • PDF

A Study on the Design of a Looper Strip Controller and its Robustness for Hot Strip Mills Using ILQ Control (역최적제어(ILQ)를 이용한 열간압연시스템의 루퍼 장력제어기 설계 및 견실성 연구)

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.93-98
    • /
    • 2001
  • This paper studies on the design of an ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between each stand plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. The mathematical model for looper is firstly obtained by Taylor's linearization of nonlinear differential equations, where it is given as a linear and time invariant state-space equation. Secondly, a looper servo controller is designed by ILQ control algorithm, which is an inverse problem of LQ(Linear Quadratic optimal control) control. By tunning control gain arbitration parameters and time constants, it is shown that the ILQ looper servo controller has the performance that makes well to follow desired trajectories of both strip tension and looper angle.

  • PDF