• 제목/요약/키워드: Linear velocity control

검색결과 316건 처리시간 0.03초

비선형 유압 서보시스템의 비선형 변환 및 이에 대한 선형제어에 관한 연구 (Application of the nonlinear transformation and linear state state feedback control to nonlinear hydraulic servo system)

  • 김영준;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.272-275
    • /
    • 1989
  • In this paper feedback linearization of valve-controlled nonlinear hydraulic velocity control system is studied. The $C^{\infty}$ nonlinear transformation T is obtained, and it is shown that this transformation is global one. Linear equivalence of nonlinear hydraulic velocity control system is obtained by this global nonlinear transformation, and linear state feedback control law is applied to this linear model. It is shown that this transformation method is to the linear approximation by simulation study..

  • PDF

속도분리를 이용한 여유자유도 로봇의 최적 경로계획 (An Optimal Trajectory Planning for Redundant Robot Manipulators Based on Velocity Decomposition)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.836-840
    • /
    • 1999
  • Linear motion and angular motion in task space are handled separately in joint velocity planning for redundant robot manipulators. In solving inverse kinematic equations with given joint velocity limits, we consider the order of priority for linear motion and angular motion. The proposed method will be useful in such applications where only linear motions are important than angular motions or vice versa.

  • PDF

선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현 (A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator)

  • 구정회;송치영
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

스핀코터 회전속도에 따른 탄탈륨 박막두께의 선형모델에 관한 연구 (The Research via Linear of Tantalum Thin Film Thickness Depending on Revolution Velocity of Spin Coater)

  • 김승욱
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.17-22
    • /
    • 2020
  • Recently, the decrease in thin film thickness has been actively studied by changing several physical elements such as the increase in revolution velocity of lower substrate equipped with AC or DC motor. In this paper, we propose a novel spin coater control system that changes AC or DC motor and common use software with limitation of velocity and position control into step motor and LABVIEW software based on GUI to control revolution velocity and position more precisely. By determining six input values of rotation velocity 1, 5, 10, 25, 50, 100 PPS, we fabricated six samples using coating target, TA(tantalum) on silicon substrate and measured their thin film thickness by SEM. Hence, this research can be applied to inferring thin film thickness of tantalum regarding any value of revolution velocity without additional experiments and for linear reference model via property analysis of thin film thickness using other thin-film materials.

대부하 대용량 유압 서보 시스템의 속도제어 (Velocity Control of Hydraulic Servo System with Heavy Load and Large Capacitya)

  • 이교일;이경수;이대옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.669-672
    • /
    • 1986
  • The velocity control of hydraulic servo system with heavy load and large capacity was investigated through the linear analysis and digital computer simulation. Each part of the nonlinear hydraulic servo system was mathmatically modelled. The result of linear analysis and computer simulation showed that the use of derivative of load pressure as a feedback signal is effective in velocity control.

  • PDF

구 주위 유동의 선형비례제어 (Linear Proportional Control of Flow Over a Sphere)

  • 전승;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2753-2756
    • /
    • 2007
  • In the present study, we reduce the drag and lift fluctuations of the sphere by providing a linear proportional control. For this purpose, we measure the radial velocity along the centerline in the wake and provide blowing and suction at a part of sphere surface based on the measured velocity. Zero-net mass flow rate is satisfied during the control. This control is applied to the flow over a sphere at Re=300 and 425. We vary the sensing location at $0.8d{\leq}X_s{\leq}1.3d$ and find that the most effective sensing region coincides with the location at which minimum correlation between the lift and sensing-velocity directions occurs. As a result, the lift and drag fluctuations are significantly reduced.

  • PDF

풍력발전시스템 속도제어의 실험적 고찰 (Investigation of a Speed Control for a Wind Turbin Systsem)

  • 임종환;최민호;허종철;김건훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.36-36
    • /
    • 2000
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is non-linear function of a wind speed, angular velocity, and pitch angle of the blade. The design of a cor_troller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the angular velocity of the blade is constant. For speed control, however, the angular velocity is no longer a constant, so that linearization of the torque in terms of a wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of experiments.

  • PDF

유사 역보행 기법을 이용한 이동로봇의 추종제어 (Tracking Control of Wheeled Mobile Robots Using Pseudo-Backstepping Method)

  • 박재용;좌동경;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.415-417
    • /
    • 2005
  • This paper proposes tracking control method using pseudo-backstepping control for wheeled mobile robots with nonholonomic constraints. First, the pseudo commands for forward linear velocity and angular velocity are chosen based on the kinematics. Then, the actual torque control inputs are designed to make the actual forward linear velocity and angular velocity follow the pseudo commands. Both semi-global practical posture(position and heading direction angle) stabilization and trajectory tracking are achieved for reference trajectories such as straight line and sinusoidal curve. The stability and performance analysed and numerical simulations are performed to confirm the effectiveness of the proposed scheme.

  • PDF

A Motion-Control Chip to Generate Velocity Profiles of Desired Characteristics

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • ETRI Journal
    • /
    • 제27권5호
    • /
    • pp.563-568
    • /
    • 2005
  • A motion-control chip contains major functions that are necessary to control the position of each motor, such as generating velocity command profiles, reading motor positions, producing control signals, driving several types of servo amplifiers, and interfacing host processors. Existing motion-control chips can only generate velocity profiles of fixed characteristics, typically linear and s-shape smooth symmetric curves. But velocity profiles of these two characteristics are not optimal for all tasks in industrial robots and automation systems. Velocity profiles of other characteristics are preferred for some tasks. This paper proposes a motion-control chip to generate velocity profiles of desired acceleration and deceleration characteristics. The proposed motion-control chip is implemented with a field-programmable gate array by using the Very High-Speed Integrated Circuit Hardware Description Language and Handel-C. Experiments using velocity profiles of four different characteristics will be performed.

  • PDF