• Title/Summary/Keyword: Linear time varying system

Search Result 302, Processing Time 0.024 seconds

A Study on Approximation Method of Linear-Time-Varying System Using Wavelet (웨이브렛을 이용한 선형 시변 시스템의 근사화기법에 관한 연구)

  • 이영석;김동옥;서보혁
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.33-39
    • /
    • 1998
  • This paper discusses approximation modelling of discrete-time linear time-varying system(LTVS). The wavelet transform is considered as a tool for representing and approximating a LTVS. The joint time-frequency properties of wave analysis are appropriate for describing the LTVS. Simulation results is included to illustrate the potential application of the technique.

  • PDF

Performance Analysis of Multirate LQG Control (멀티레이트 LQG 제어 기법의 성능 비교 분석)

  • 이진우;오준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1999
  • In discrete-time controlled system, sampling time is one of the critical parameters for control performance. It is useful to employ different sampling rates into the system considering the feasibility of measuring system or actuating system. The systems with the different sampling rates in their input and output channels are named multirate system. Even though the original continuous-time system is time-invariant, it is realized as time-varying state equation depending on multirate sampling mechanism. By means of the augmentation of the inputs and the outputs over one period, the time-varying system equation can be constructed into the time-invariant equation. The two multirate formulations have some trade-offs in the simplicity to construct the controller, the control performance. It is good issue to determine the suitable formulation in consideration of performance of them. In this paper, the two categories of multirate formulations will be compared in terms of the linear quadratic (LQ) cost function. The results are used to select the multirate formulation and the sampling rates suitable to the desired control performance.

  • PDF

Structural time-varying damage detection using synchrosqueezing wavelet transform

  • Liu, Jing-Liang;Wang, Zuo-Cai;Ren, Wei-Xin;Li, Xing-Xin
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.119-133
    • /
    • 2015
  • This paper proposed a structural time-varying damage detection method by using synchrosqueezing wavelet transform. The instantaneous frequencies of a structure with time-varying damage are first extracted using the synchrosqueezing wavelet transform. Since the proposed synchrosqueezing wavelet transform is invertible, thus each individual component can be reconstructed and the modal participation factor ratio can be extracted based on the amplitude of the analytical signals of the reconstructed individual components. Then, the new time-varying damage index is defined based on the extracted instantaneous frequencies and modal participation factor ratio. Both free and forced vibrations of a classical Duffing nonlinear system and a simply supported beam structure with abrupt and linear time-varying damage are simulated. The proposed synchrosqueezing wavelet transform method can successfully extract the instantaneous frequencies of the damaged structures under free vibration or vibration due to earthquake excitation. The results also show that the defined time-varying damage index can effectively track structural time-varying damage.

Guaranteed Cost Control of Parameter Uncertain Systems with Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • In this paper, we deal with the problem of designing guaranteed cost state feedback controller for the generalized time-varying delay systems with delayed state and control input. The generalized time delay system problems solved on the basis of LMI(linear matrix inequality) technique considering time-varying delays. The sufficient condition for the existence of controller and guaranteed cost state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be reformulated as LMI forms in terms of transformed variables. Therefore, all solutions of LMIs, guaranteed cost controller gain, and guaranteed cost are obtained at the same time. The proposed controller design method can be extended into the problem of robust guaranteed cost controller design method for parameter uncertain systems with time-varying delays easily.

  • PDF

Delay-dependent Robust H Control of Uncertain Linear Systems with Time-varying Delays and Randomly Occurring Disturbances (시변지연과 임의 발생 외란을 고려한 불확실 선형 시스템에 대한 지연의존 강인 H 제어)

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.679-687
    • /
    • 2013
  • This paper proposes a new condition about delay-dependent robust $H_{\infty}$ control of uncertain linear systems with time-varying delay and randomly occurring disturbances. The norm bounded uncertainties are subjected to the system matrices. Based on Lyapunov stability theory, a sufficient condition for designing a controller gain such that the closed-loop systems are asymptotically stable with $H_{\infty}$ disturbance level ${\gamma}$ is formulated in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are included to show the effectiveness of the presented method.

State feedback controller design for linear multivariable systems with delays (다변수 시간지연 시스템의 상태궤환 제어기 설계)

  • 홍석민;황승구;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1040-1044
    • /
    • 1992
  • This paper presents an algebraic approach for finding a dynamic state feedback controller when the linear multi-input system with delays in both state and input is controllable. In the time-delay case, controllability of the system does not always imply that system is cyclizable. Therefore, reduced order augmentation systems which is cyclizable as the time-varying case are considered. It is possible to construct feedback contorl systems by using single-input methods.

  • PDF

Stability Conditions for Positive Time-Varying Discrete Interval System with Unstructured Uncertainty (비구조화 불확실성을 갖는 양의 시변 이산 구간 시스템의 안정 조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.577-583
    • /
    • 2019
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, we consider the new stability condition for the positive time-varying linear discrete interval systems with time-varying delay and unstructured uncertainty. The delay time is considered as time-varying within certain interval having minimum and maximum values and the system is subjected to nonlinear unstructured uncertainty which only gives information on uncertainty magnitude. The proposed stability condition is an improvement of the previous results which can be applied only to time-invariant systems or had no consideration of uncertainty, and they can be expressed in the form of a very simple inequality. The stability conditions are derived using the Lyapunov stability theory and have many advantages over previous results using the upper solution bound of the Lyapunov equation. Through numerical example, the proposed stability conditions are proven to be effective and can include the existing results.

Parameter Reduction in Digital Adaptive Flight Control System for Spaceplanes

  • Togasaki, Yoshihiro;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.995-1000
    • /
    • 2004
  • A digital adaptive flight control system is presented for a Japanese automatic landing flight experiment vehicle (ALFLEX). In previous adaptive control systems based on a linear-parameter-varying (LPV) form, the output behavior was excellent, while the behavior of the adjusted parameters was unsatisfactory. In the present study, to obtain a more appropriate parameter adjustment law, the relationship between the coefficient matrices in a continuous-time state equation and the coefficients of a pulse transfer function in a discrete system for conventional aircraft is investigated. As a result, it is revealed that the coefficients of the numerator can be treated as a linear function of dynamic pressure (linear-parameter-varying: LPV), while the coefficients of the denominator can be treated as constant (linear-time-invariant: LTI). From the above analysis, an improved parameter adjustment law is derived by reducing the number of the adjustment parameters. Simulation results also revealed both good output tracking and good parameter adjustment compared with the previous results.

  • PDF

Current Collection of Catenary System with Time-Varying Stiffness (시변강성 가선계의 집전성능)

  • 최연선
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.131-138
    • /
    • 2000
  • The design of current collection system of high speed train requires the fundamental understandings for the dynamic characteristics of catenary system and pantograph. The stiffness of catenary system of high speed train has the varying characteristics for the change of contact point with pantograph, since the supporting pole and hanger make the different boundary conditions for the up-down stiffness of a trolley wire. The variation of stiffness results in Mathiue equation, which characterizes the stability of the system. However, the two-term variation of the stiffness due to span length and hanger distance cannot be solved analytically. In this paper, the stiffness variations are calculated and the physical reasoning of linear model and one term Mathieu equation are reviewed. And the numerical analysis for the two-term variation of the stiffness is done for the several design parameters of pantograph.

  • PDF

A Fractional Model Reduction for Linear Systems with State Delay (상태변수 시간지연을 갖는 선형시스템의 분수 모델 축소)

  • Yoo, Seog-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.29-36
    • /
    • 2004
  • This paper deals with a fractional model reduction for linear systems with time varying delayed states. A contractive coprime factorization of linear time delayed systems is defined and obtained by solving linear matrix inequalities. Using generalize controllability and observability gramians of tile contractive coprime factor, a balanced state space realization of the system is derived. The reduced model will be obtained by truncating states in the balanced realization and an upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is illustrated.