• Title/Summary/Keyword: Linear system of equations

Search Result 844, Processing Time 0.033 seconds

MODIFIED GEOMETRIC PROGRAMMING PROBLEM AND ITS APPLICATIONS

  • ISLAM SAHIDUL;KUMAR ROY TAPAN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.121-144
    • /
    • 2005
  • In this paper, we propose unconstrained and constrained posynomial Geometric Programming (GP) problem with negative or positive integral degree of difficulty. Conventional GP approach has been modified to solve some special type of GP problems. In specific case, when the degree of difficulty is negative, the normality and the orthogonality conditions of the dual program give a system of linear equations. No general solution vector exists for this system of linear equations. But an approximate solution can be determined by the least square and also max-min method. Here, modified form of geometric programming method has been demonstrated and for that purpose necessary theorems have been derived. Finally, these are illustrated by numerical examples and applications.

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

Design of the multivariable hard nonlinear controller using QLQG/$H_{\infty}$ control (QLQG/$H_{\infty}$ 제어를 이용한 다변수 하드비선형 제어기 설계)

  • 한성익;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.81-84
    • /
    • 1996
  • We propose the robust nonlinear controller design methodology, the $H_{\infty}$ constrained quasi - linear quadratic Gaussian control (QLQG/ $H_{\infty}$), for the statistically-linearized multivariable system with hard nonlinearties such as Coulomb friction, deadzone, etc. The $H_{\infty}$ performance constraint is involved in the optimization process by replacing the covariance Lyapunov equation with the Riccati equation whose solution leads to an upper bound of the QLQG performance. Because of the system's nonlinearity, however, one equation among three Riccati equations contain the nonlinear correction terms that are very difficult to solve numerically. To treat this problem, we use simple algebraic techniques. With some analytic transformation for Riccati equations, the nonlinear correction terms can be so eliminated that the set of a linear controller to the different operating points are designed. Synthesizing these via inverse random input describing function (IRIDF) technique, the final nonlinear controller can be designed.

  • PDF

Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method (Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석)

  • Choi Hwan-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

Application Study of Nonlinear Transformation Control Theory for Link Arm System (링크 암에 대한 비선형 변환 제어 이론의 응용 연구)

  • Baek, Y.S.;Yang, C.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

Dynamic Analysis of a Pendulum Automatic Dynamic Balancer (펜들럼 자동 평형 장치의 동특성 해석)

  • Lee, Jin-Woo;Sohn, Jin-Seung;Joseph Cho;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.396.2-396
    • /
    • 2002
  • Dynamic stability and behavior are analyzed fur Pendulum Automatic Dynamic Balancer which is a device to reduce an unbalanced mass of rotors. The nonlinear equations of motion for a system including a Pendulum Balancer are derived with respect to polar coordinate by Lagrange's equations. The perturbation method is applied to find the equilibrium positions and to obtain the linear variation equations. Based on linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue problem. (omitted)

  • PDF

SINGULAR INTEGRAL EQUATIONS AND UNDERDETERMINED SYSTEMS

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 1998
  • In this paper the linear algebraic system obtained from a singular integral equation with variable coeffcients by a quadrature-collocation method is considered. We study this underdetermined system by means of the Moore Penrose generalized inverse. Convergence in compact subsets of [-1, 1] can be shown under some assumptions on the coeffcients of the equation.

  • PDF

A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams

  • Mohammadnejad, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.655-674
    • /
    • 2015
  • In this paper, a new and simplified method is presented in which the natural frequencies of the uniform and non-uniform beams are calculated through simple mathematical relationships. The various vibration problems such as: Rayleigh beam under variable axial force, axial vibration of a bar with and without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, flexural vibration of the beam with laterally distributed elastic springs and also flexural vibration of the beam with effects of viscose damping are investigated. The governing differential equations are first obtained and then; according to a harmonic vibration, are converted into single variable equations in terms of location. Through repetitive integrations, the governing equations are converted into weak form integral equations. The mode shape functions of the vibration are approximated using a power series. Substitution of the power series into the integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of a non-trivial solution for system of equations. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained with those obtained from other published references and results of available finite element software.

Reactive Power Loadability in Korean Power System (한전 계통에서의 무효전력 부하 평가에 관한 연구)

  • Yoon, Jong-Su;Won, Jong-Ryul;Yoon, Yong-Beum;Jang, Byung-Hoon;Lee, Ki-Sun;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1472-1474
    • /
    • 1999
  • This paper proposes the estimation method about how much reactive power can be increased or decreased under prescribed bus voltage limits in non-linear reactive power and power flow equations. The static nonlinear reactive power voltage problem can be formulated using a linear resistive(I-V) network with voltage dependent current sources. Linear programming model is derived for finding bounds on reactive power. This method was applied to future Korean power system and proved its effectiveness.

  • PDF