• Title/Summary/Keyword: Linear process

Search Result 3,205, Processing Time 0.03 seconds

Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance (방사선 불투과성 물질 산화이테르븀(Ytterbium oxide)의 방사선 융합 차폐성능 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2021
  • While the shielding substances of radiation shields in medical institutions are beginning to be replaced by environmentally friendly materials, radiation protection according to the shielding properties of environmentally friendly substances is becoming an important factor rather than the existing lead shielding properties. Tungsten and barium sulfate are representative shielding materials similar to lead, and are made in sheets or fiber form with eco-friendly materials. Ytterbium is an impermeable material used as a fluorine compound in the dental radiation field. This study aims to evaluate the shielding performance in the x-ray shielding area by comparing the shielding properties of ytterbium by energy band and that of existing eco-friendly materials. When three types of shielding sheets were fabricated and tested under the same process conditions, the shielding performance of the medical radiation area was about 5 % difference from tungsten. Furthermore, shielding performance was superior to barium sulfate. In the cross-sectional structure of the shielding sheet, there was a disadvantage that the arrangement of particles was not uniform. Ytterbium oxide showed sufficient potential as a medical radiation shielding material, and it is thought that it can improve the shielding performance by controlling the particle arrangement structure and particle size.

Implementation of Fixslicing AES-CTR Speed Optimized Using Pre-Computed on 32-Bit RISC-V (32-bit RISC-V 상에서의 사전 연산을 활용한 Fixslicing AES-CTR 속도 최적화 구현)

  • Eum, Si-Woo;Kim, Hyun-Jun;Sim, Min-Joo;Song, Gyeong-Ju;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Fixslicing AES is a technique that omits the Shiftrows step to minimize the cost of the linear layer of Bitsliced AES, showing a 30% performance over the Bitsliced technique. However, the amount of code increases to compensate for the omitted shiftrows. Therefore, it is proposed to be divided into Semi-Fixsliced in which only half of shiftrows are omitted and Fully-Fixsliced in which Shiftrows are omitted completely. In this paper, we propose a CTR mode implementation of Fixslicing AES on RISC-V using the pre-computed table technique. By utilizing the characteristics of the CTR mode, it is possible to perform fast encryption by omitting up to the second round SubBytes from the encryption process through pre-computed up to the second round SubBytes operation. Using this technique, it was confirmed that Semi-Fixsliced has a performance of 1,345 cycles per block and a performance improvement of 7% compared to the previous performance result, and Fully-Fixsliced has a performance of 1,283 cycles per block and a performance of 9% compared to the previous performance result on 32-bit RISC-V.

A 3-SAT Polynomial Time Algorithm Based on Minimum Frequency Literal-First Selection Method (최소 빈도수 문자 우선 선택 방법의 3-SAT 다항시간 알고리즘)

  • Sang-Un, Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.157-162
    • /
    • 2023
  • To NP-complete 3-SAT problem, this paper proposes a O(nm) polynomial time algorithm, where n is the number of literals and m is the total frequency of all literals in equation f. The algorithm firstly decides a truth value of a literal in sequence of previously-set priority. The priority order is as follows: a literal whose occurrence in a clause is 1(k=1), a literal which is k≥2 and whose truth value is either 0 or 1, and a literal with the minimum frequency. Then, literals whose truth value is determined are then deleted from clause T and the remaining clauses. This process is repeated l times, the number of literals. As a result, the proposed algorithm has been successful in accurately determining the satisfiability of a given equation f and in deciding the truth value of all the literals. This paper, therefore, provides not only a linear-time algorithm as a viable solution to the SAT problem, but also a basis for solving the P versus NP problem.

Application of Artificial Neural Network to Flamelet Library for Gaseous Hydrogen/Liquid Oxygen Combustion at Supercritical Pressure (초임계 압력조건에서 기체수소-액체산소 연소해석의 층류화염편 라이브러리에 대한 인공신경망 학습 적용)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2021
  • To develop an efficient procedure related to the flamelet library, the machine learning process based on artificial neural network(ANN) is applied for the gaseous hydrogen/liquid oxygen combustor under a supercritical pressure condition. For hidden layers, 25 combinations based on Rectified Linear Unit(ReLU) and hyperbolic tangent are adopted to find an optimum architecture in terms of the computational efficiency and the training performance. For activation functions, the hyperbolic tangent is proper to get the high learning performance for accurate properties. A transformation learning data is proposed to improve the training performance. When the optimal node is arranged for the 4 hidden layers, it is found to be the most efficient in terms of training performance and computational cost. Compared to the interpolation procedure, the ANN procedure reduces computational time and system memory by 37% and 99.98%, respectively.

Non-Profiling Analysis Attacks on PQC Standardization Algorithm CRYSTALS-KYBER and Countermeasures (PQC 표준화 알고리즘 CRYSTALS-KYBER에 대한 비프로파일링 분석 공격 및 대응 방안)

  • Jang, Sechang;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1045-1057
    • /
    • 2022
  • Recently, the National Institute of Standards and Technology (NIST) announced four cryptographic algorithms as a standard candidates of Post-Quantum Cryptography (PQC). In this paper, we show that private key can be exposed by a non-profiling-based power analysis attack such as Correlation Power Analysis (CPA) and Differential Deep Learning Analysis (DDLA) on CRYSTALS-KYBER algorithm, which is decided as a standard in the PKE/KEM field. As a result of experiments, it was successful in recovering the linear polynomial coefficient of the private key. Furthermore, the private key can be sufficiently recovered with a 13.0 Normalized Maximum Margin (NMM) value when Hamming Weight of intermediate values is used as a label in DDLA. In addition, these non-profiling attacks can be prevented by applying countermeasures that randomly divides the ciphertext during the decryption process and randomizes the starting point of the coefficient-wise multiplication operation.

Machine Parts(O-Ring) Defect Detection Using Adaptive Binarization and Convex Hull Method Based on Deep Learning (적응형 이진화와 컨벡스 헐 기법을 적용한 심층학습 기반 기계부품(오링) 불량 판별)

  • Kim, Hyun-Tae;Seong, Eun-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1853-1858
    • /
    • 2021
  • O-rings fill the gaps between mechanical parts. Until now, the sorting of defective products has been performed visually and manually, so classification errors often occur. Therefore, a camera-based defect classification system without human intervention is required. However, a binarization process is required to separate the required region from the background in the camera input image. In this paper, an adaptive binarization technique that considers the surrounding pixel values is applied to solve the problem that single-threshold binarization is difficult to apply due to factors such as changes in ambient lighting or reflections. In addition, the convex hull technique is also applied to compensate for the missing pixel part. And the learning model to be applied to the separated region applies the residual error-based deep learning neural network model, which is advantageous when the defective characteristic is non-linear. It is suggested that the proposed system through experiments can be applied to the automation of O-ring defect detection.

Relationship between needle depth for lumbar transforaminal epidural injection and patients' height and weight using magnetic resonance imaging

  • John, Hyunji;Sohn, Kyomin;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.345-352
    • /
    • 2022
  • Background: Optimal needle depth in transforaminal epidural injection (TFEI) is determined by body measurements and is influenced by the needle entry angle. Physician can choose the appropriate needle length and perform the procedure more effectively if depth is predicted in advance. Methods: This retrospective study included patients with lumbosacral pain from a single university hospital. The skin depth from the target point was measured using magnetic resonance imaging transverse images. The depth was measured bilaterally for L4 and L5 TFEIs at 15°, 20°, and 25° oblique angles from the spinous process. Results: A total of 4,632 measurements of 386 patients were included. The lengths of the left and right TFEI at the same level and oblique angle were assessed, and no statistical differences were identified. Therefore, linear regression analysis was performed for bilateral L4 and L5 TFEIs. The R-squared values of height and weight combined were higher than the height, weight, and body mass index (BMI). The following equation was established: Depth (mm) = a - b (height, cm) + c (weight, kg). Based on the equation, maximal BMI capable with a 23G, 3.5-inch, Quincke-type point spinal needle was presented for three different angles (15°, 20°, and 25°) at lumbar levels L4 and L5. Conclusions: The maximal BMI that derived from the formulated equation is listed on the table, which can help in preparations for morbid obesity. If a patient has bigger BMI than the one in the table, the clinician should prepare longer needle than the usual spinal needle.

Stationary Waiting Times in Simple Fork-and-Join Queues with Finite Buffers and Communication Blocking (통신차단규칙을 따르는 유한버퍼 단순 조립형 대기행렬 망에서의 안정대기시간)

  • Seo, Dong-Won;Lee, Seung-Man
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.109-117
    • /
    • 2010
  • In this study, we consider stationary waiting times in a simple fork-and-join type queue which consists of three single-server machines, Machine 1, Machine 2, and Assembly Machine. We assume that the queue has a renewal arrival process and that independent service times at each node are either deterministic or non-overlapping. We also assume that the Machines 1 and 2 have an infinite buffer capacity whereas the Assembly Machine has two finite buffers, one for each machine. Services at each machine are given by FIFO service discipline and a communication blocking policy. We derive the explicit expressions for stationary waiting times at all nodes as a function of finite buffer capacities by using (max,+)-algebra. Various characteristics of stationary waiting times such as mean, higher moments, and tail probability can be computed from these expressions.

Evaluation of online video content related to reverse shoulder arthroplasty: a YouTube-based study

  • Mohamad Y. Fares;Jonathan Koa;Peter Boufadel;Jaspal Singh;Amar S. Vadhera;Joseph A. Abboud
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.162-168
    • /
    • 2023
  • Background: Reverse shoulder arthroplasty (RSA) has evolved continuously over recent years, with expanded indications and better outcomes. YouTube is one of the most popular sources globally for health-related information available to patients. Evaluating the reliability of YouTube videos concerning RSA is important to ensure proper patient education. Methods: YouTube was queried for the term "reverse shoulder replacement." The first 50 videos were evaluated using three different scores: Journal of the American Medical Association (JAMA) benchmark criteria, the global quality score (GQS), and the reverse shoulder arthroplasty-specific score (RSAS). Multivariate linear regression analyses were conducted to determine the presence of a relationship between video characteristics and quality scores. Results: The average number of views was 64,645.78±264,160.9 per video, and the average number of likes was 414 per video. Mean JAMA, GQS, and RSAS scores were 2.32±0.64, 2.31±0.82, and 5.53±2.43, respectively. Academic centers uploaded the highest number of videos, and surgical techniques/approach videos was the most common video content. Videos with lecture content predicted higher JAMA scores whereas videos uploaded by industry predicted lower RSAS scores. Conclusions: Despite its massive popularity, YouTube videos provide a low quality of information on RSA. Introducing a new editorial review process or developing a new platform for patients' medical education may be necessary. Level of evidence: Not applicable.

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.