• 제목/요약/키워드: Linear prediction analysis

검색결과 865건 처리시간 0.027초

앰비언트 디스플레이 위치추적 시스템의 데이터 손실에 대한 선형 예측 알고리즘 적용 및 분석 (Performance and Analysis of Linear Prediction Algorithm for Robust Localization System)

  • 김주연;윤기훈;김건욱;김대희;박수준
    • 대한전자공학회논문지SP
    • /
    • 제45권4호
    • /
    • pp.84-91
    • /
    • 2008
  • 본 논문에서는 초음파 센서를 이용하여 고령자를 위한 앰비언트 디스플레이 시스템을 제안하고, 시스템의 신뢰도를 높이기 위해서 선형 예측 알고리즘을 적용하였다. 본 논문에서는 시스템의 사용자를 고령자로 제안하여 일반인에 비해 느린 움직임으로 가정하였고 얻어진 데이터가 모두 극점인 데이터의 특성상 AR(Autoregressive) 모델을 사용하여 Yule-Walker 방식의 선형 예측 알고리즘을 적용하였다. 선형 예측 알고리즘을 적용하기 위해서는 적절한 참조 데이터와 차수의 결정이 요구된다. 본 논문에서는 데이터의 특성과 평균 에러, 계산량을 고려하여 50개의 참조데이터를 이용한 16차의 시스템을 통해서 앰비언트 디스플레이 시스템의 신뢰도를 평균 74.39%, 최대 97.97%정도 높일 수 있음을 확인하였다.

초음파 속도법에 의한 현장 콘크리트 강도추정의 신뢰성 향상 (Reliability Improvement of In-Place Concreter Strength Prediction by Ultrasonic Pulse Velocity Method)

  • 원종필;박성기
    • 한국농공학회지
    • /
    • 제43권4호
    • /
    • pp.97-105
    • /
    • 2001
  • The ultrasonic pulse velocity test has a strong potential to be developed into a very useful and relatively inexpensive in-place test for assuring the quality of concrete placed in structure. The main problem in realizing this potential is that the relationship between compressive strength ad ultrasonic pulse velocity is uncertain and concrete is an inherently variable material. The objective of this study is to improve the reliability of in-place concrete strength predictions by ultrasonic pulse velocity method. Experimental cement content, s/a rate, and curing condition of concrete. Accuracy of the prediction expressed in empirical formula are examined by multiple regression analysis and linear regression analysis and practical equation for estimation the concrete strength are proposed. Multiple regression model uses water-cement ratio cement content s/a rate, and pulse velocity as dependent variables and the compressive strength as an independent variable. Also linear regression model is used to only pulse velocity as dependent variables. Comparing the results of the analysis the proposed equation expressed highest reliability than other previous proposed equations.

  • PDF

A HGLM framework for Meta-Analysis of Clinical Trials with Binary Outcomes

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1429-1440
    • /
    • 2008
  • In a meta-analysis combining the results from different clinical trials, it is important to consider the possible heterogeneity in outcomes between trials. Such variations can be regarded as random effects. Thus, random-effect models such as HGLMs (hierarchical generalized linear models) are very useful. In this paper, we propose a HGLM framework for analyzing the binominal response data which may have variations in the odds-ratios between clinical trials. We also present the prediction intervals for random effects which are in practice useful to investigate the heterogeneity of the trial effects. The proposed method is illustrated with a real-data set on 22 trials about respiratory tract infections. We further demonstrate that an appropriate HGLM can be confirmed via model-selection criteria.

  • PDF

An Approach to Applying Multiple Linear Regression Models by Interlacing Data in Classifying Similar Software

  • Lim, Hyun-il
    • Journal of Information Processing Systems
    • /
    • 제18권2호
    • /
    • pp.268-281
    • /
    • 2022
  • The development of information technology is bringing many changes to everyday life, and machine learning can be used as a technique to solve a wide range of real-world problems. Analysis and utilization of data are essential processes in applying machine learning to real-world problems. As a method of processing data in machine learning, we propose an approach based on applying multiple linear regression models by interlacing data to the task of classifying similar software. Linear regression is widely used in estimation problems to model the relationship between input and output data. In our approach, multiple linear regression models are generated by training on interlaced feature data. A combination of these multiple models is then used as the prediction model for classifying similar software. Experiments are performed to evaluate the proposed approach as compared to conventional linear regression, and the experimental results show that the proposed method classifies similar software more accurately than the conventional model. We anticipate the proposed approach to be applied to various kinds of classification problems to improve the accuracy of conventional linear regression.

대변형을 하는 고무 부품의 거동에 관한 해석 (An analysis about the behavior of rubber component with large deformation)

  • 한문식;조재웅
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.47-53
    • /
    • 2005
  • The non-linear finite element program of the large deformation analysis by computer simulation has been used in the prediction and evaluation of the behaviors of the non-linear rubber components. The analysis of rubber components requires the tools modelling the special materials that are quite different from those used for the metallic parts. The nonlinear simulation analysis used in this study is expected to be widely applied in the design analysis and the development of several rubber components which are used In the manufacturing process of many industries. By utilizing this method, the time and cost can also be saved in developing the new rubber product. The objective of this study is to analyze the rubber component with the large deformation and non-linear properties.

Prediction of Dry Matter Intake in Lactating Holstein Dairy Cows Offered High Levels of Concentrate

  • Rim, J.S.;Lee, S.R.;Cho, Y.S.;Kim, E.J.;Kim, J.S.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권5호
    • /
    • pp.677-684
    • /
    • 2008
  • Accurate estimation of dry matter intake (DMI) is a prerequisite to meet animal performance targets without penalizing animal health and the environment. The objective of the current study was to evaluate some of the existing models in order to predict DMI when lactating dairy cows were offered a total mixed ration containing a high level of concentrates and locally produced agricultural by-products. Six popular models were chosen for DMI prediction (Brown et al., 1977; Rayburn and Fox, 1993; Agriculture Forestry and Fisheries Research Council Secretariat, 1999; National Research Council (NRC), 2001; Cornell Net Carbohydrate and Protein System (CNCPS), Fox et al., 2003; Fuentes-Pila et al., 2003). Databases for DMI comparison were constructed from two different sources: i) 12 commercial farm investigations and ii) a controlled dairy cow experiment. The model evaluation was performed using two different methods: i) linear regression analysis and ii) mean square error prediction analysis. In the commercial farm investigation, DMI predicted by Fuentes-Pila et al. (2003) was the most accurate when compared with the actual mean DMI, whilst the CNCPS prediction showed larger mean bias (difference between mean predicted and mean observed values). Similar results were observed in the controlled dairy cow experiment where the mean bias by Fuentes-Pila et al. (2003) was the smallest of all six chosen models. The more accurate prediction by Fuentes-Pila et al. (2003) could be attributed to the inclusion of dietary factors, particularly fiber as these factors were not considered in some models (i.e. NRC, 2001; CNCPS (Fox et al., 2003)). Linear regression analysis had little meaningful biological significance when evaluating models for prediction of DMI in this study. Further research is required to improve the accuracy of the models, and may recommend more mechanistic approaches to investigate feedstuffs (common to the Asian region), animal genotype, environmental conditions and their interaction, as the majority of the models employed are based on empirical approaches.

Predictive analysis in insurance: An application of generalized linear mixed models

  • Rosy Oh;Nayoung Woo;Jae Keun Yoo;Jae Youn Ahn
    • Communications for Statistical Applications and Methods
    • /
    • 제30권5호
    • /
    • pp.437-451
    • /
    • 2023
  • Generalized linear models and generalized linear mixed models (GLMMs) are fundamental tools for predictive analyses. In insurance, GLMMs are particularly important, because they provide not only a tool for prediction but also a theoretical justification for setting premiums. Although thousands of resources are available for introducing GLMMs as a classical and fundamental tool in statistical analysis, few resources seem to be available for the insurance industry. This study targets insurance professionals already familiar with basic actuarial mathematics and explains GLMMs and their linkage with classical actuarial pricing tools, such as the Buhlmann premium method. Focus of the study is mainly on the modeling aspect of GLMMs and their application to pricing, while avoiding technical issues related to statistical estimation, which can be automatically handled by most statistical software.

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

An Investigation on Application of Experimental Design and Linear Regression Technique to Predict Pitting Potential of Stainless Steel

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.52-61
    • /
    • 2021
  • This study using experimental design and linear regression technique was implemented in order to predict the pitting potential of stainless steel in marine environments, with the target materials being AL-6XN and STS 316L. The various variables (inputs) which affect stainless steel's pitting potential included the pitting resistance equivalent number (PRNE), temperature, pH, Cl- concentration, sulfate levels, and nitrate levels. Among them, significant factors affecting pitting potential were chosen through an experimental design method (screening design, full factor design, analysis of variance). The potentiodynamic polarization test was performed based on the experimental design, including significant factor levels. From these testing methods, a total 32 polarization curves were obtained, which were used as training data for the linear regression model. As a result of the model's validation, it showed an acceptable prediction performance, which was statistically significant within the 95% confidence level. The linear regression model based on the full factorial design and ANOVA also showed a high confidence level in the prediction of pitting potential. This study confirmed the possibility to predict the pitting potential of stainless steel according to various variables used with experimental linear regression design.

선형 예측 분석 기반의 딱총 새우 잡음 검출 기법 (Linear prediction analysis-based method for detecting snapping shrimp noise)

  • 박진욱;홍정표
    • 한국음향학회지
    • /
    • 제42권3호
    • /
    • pp.262-269
    • /
    • 2023
  • 본 논문에서는 선형 예측 분석을 기반으로 한 딱총새우 잡음 검출을 위한 특징을 제안한다. 딱총새우는 천해에 서식하는 종으로, 높은 진폭의 신호를 생성하고 빈번하게 발생하기 때문에 수중 잡음의 주된 원인 중 하나이다. 제안된 특징은 딱총새우 잡음이 갑작스럽게 발생하고 빠르게 소멸하는 특징을 활용하기 위해 선형 예측 분석을 이용하여 정확한 잡음 구간을 검출하고 딱총새우 잡음의 영향을 줄인다. 선형 예측 분석으로 예측한 값과 실제 측정값 사이의 오차가 크기 때문에 이를 통해 효과적으로 딱총새우 구간 검출이 가능해진다. 추가적으로 제안된 특징에 일정 오경보 확률 탐지기를 결합하여 잡음 구간 검출 성능을 추가적으로 개선한다. 제안한 방법을 딱총새우 잡음 구간 검출 최신 방법으로 알려진 다층 웨이블릿 패킷 분해와 비교한 결과, 제안한 방법이 수신자 조작 특성 곡선과 곡선 아래의 면적 측면에서 성능이 평균적으로 0.12만큼 우수하였고 계산량 측면에서도 계산 복잡도가 더 낮았다.