• 제목/요약/키워드: Linear operator

검색결과 504건 처리시간 0.023초

A Note on the Pettis Integral and the Bourgain Property

  • Lim, Jong Sul;Eun, Gwang Sik;Yoon, Ju Han
    • 충청수학회지
    • /
    • 제5권1호
    • /
    • pp.159-165
    • /
    • 1992
  • In 1986, R. Huff [3] showed that a Dunford integrable function is Pettis integrable if and only if T : $X^*{\rightarrow}L_1(\mu)$ is weakly compact operator and {$T(K(F,\varepsilon))|F{\subset}X$, F : finite and ${\varepsilon}$ > 0} = {0}. In this paper, we introduce the notion of Bourgain property of real valued functions formulated by J. Bourgain [2]. We show that the class of pettis integrable functions is linear space and if lis bounded function with Bourgain property, then T : $X^{**}{\rightarrow}L_1(\mu)$ by $T(x^{**})=x^{**}f$ is $weak^*$ - to - weak linear operator. Also, if operator T : $L_1(\mu){\rightarrow}X^*$ with Bourgain property, then we show that f is Pettis representable.

  • PDF

MAPS PRESERVING JORDAN AND ⁎-JORDAN TRIPLE PRODUCT ON OPERATOR ⁎-ALGEBRAS

  • Darvish, Vahid;Nouri, Mojtaba;Razeghi, Mehran;Taghavi, Ali
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.451-459
    • /
    • 2019
  • Let ${\mathcal{A}}$ and ${\mathcal{B}}$ be two operator ${\ast}$-rings such that ${\mathcal{A}}$ is prime. In this paper, we show that if the map ${\Phi}:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is bijective and preserves Jordan or ${\ast}$-Jordan triple product, then it is additive. Moreover, if ${\Phi}$ preserves Jordan triple product, we prove the multiplicativity or anti-multiplicativity of ${\Phi}$. Finally, we show that if ${\mathcal{A}}$ and ${\mathcal{B}}$ are two prime operator ${\ast}$-algebras, ${\Psi}:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is bijective and preserves ${\ast}$-Jordan triple product, then ${\Psi}$ is a ${\mathbb{C}}$-linear or conjugate ${\mathbb{C}}$-linear ${\ast}$-isomorphism.

Some Inclusion Properties of New Subclass of Starlike and Convex Functions associated with Hohlov Operator

  • Sokol, Janusz;Murugusundaramoorthy, Gangadharan;Kothandabani, Thilagavathi
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.597-610
    • /
    • 2016
  • For a sufficiently adequate special case of the Dziok-Srivastava linear operator defined by means of the Hadamard product (or convolution) with Srivastava-Wright convolution operator, the authors investigate several mapping properties involving various subclasses of analytic and univalent functions, $G({\lambda},{\alpha})$ and $M({\lambda},{\alpha})$. Furthermore we discuss some inclusion relations for these subclasses to be in the classes of k-uniformly convex and k-starlike functions.

Some properties of a Certain family of Meromorphically Univalent Functions defined by an Integral Operator

  • Aghalary, Rasoul
    • Kyungpook Mathematical Journal
    • /
    • 제48권3호
    • /
    • pp.379-385
    • /
    • 2008
  • Making use of a linear operator, we introduce certain subclass of meromorphically univalent functions in the punctured unit disk and study its properties including some inclusion results, coefficient and distortion problems. Our result generalize many results known in the literature.

APPLICATIONS OF THE REPRODUCING KERNEL THEORY TO INVERSE PROBLEMS

  • Saitoh, Saburou
    • 대한수학회논문집
    • /
    • 제16권3호
    • /
    • pp.371-383
    • /
    • 2001
  • In this survey article, we shall introduce the applications of the theory of reproducing kernels to inverse problems. At the same time, we shall present some operator versions of our fundamental general theory for linear transforms in the framework of Hilbert spaces.

  • PDF

A NEW SUBCLASS OF MEROMORPHIC FUNCTIONS DEFINED BY HILBERT SPACE OPERATOR

  • AKGUL, Arzu
    • 호남수학학술지
    • /
    • 제38권3호
    • /
    • pp.495-506
    • /
    • 2016
  • In this paper, we introduce and investigate a new subclass of meromorphic functions associated with a certain integral operator on Hilbert space. For this class, we obtain several properties like the coefficient inequality, extreme points, radii of close-to-convexity, starlikeness and meromorphically convexity and integral transformation. Further, it is shown that this class is closed under convex linear combination.

A CERTAIN SUBCLASS OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS ASSOCIATED WITH AN INTEGRAL OPERATOR

  • Akgul, Arzu
    • 호남수학학술지
    • /
    • 제39권3호
    • /
    • pp.331-347
    • /
    • 2017
  • The aim of the present paper is to introduce a new subclass of meromorphic functions with positive coefficients defined by a certain integral operator and a necessary and sufficient condition for a function f to be in this class. We obtain coefficient inequality, meromorphically radii of close-to-convexity, starlikeness and convexity, convex linear combinations, Hadamard product and integral transformation for the functions f in this class.

On A Subclass of Harmonic Multivalent Functions Defined by a Certain Linear Operator

  • Darwish, Hanan Elsayed;Lashin, Abdel Moneim Yousof;Sowileh, Suliman Mohammed
    • Kyungpook Mathematical Journal
    • /
    • 제59권4호
    • /
    • pp.651-663
    • /
    • 2019
  • In this paper, we introduce and study a new subclass of p-valent harmonic functions defined by modified operator and obtain the basic properties such as coefficient characterization, distortion properties, extreme points, convolution properties, convex combination and also we apply integral operator for this class.

A geometric criterion for the element of the class $A_{1,aleph_0 $(r)

  • Kim, Hae-Gyu;Yang, Young-Oh
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.635-647
    • /
    • 1995
  • Let $H$ denote a separable, infinite dimensional complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $1_H$ and is closed in the $weak^*$ operator topology on $L(H)$. For $T \in L(H)$, let $A_T$ denote the smallest subalgebra of $L(H)$ that contains T and $1_H$ and is closed in the $weak^*$ operator topology.

  • PDF