• Title/Summary/Keyword: Linear motion

Search Result 2,030, Processing Time 0.022 seconds

A Comparative Study of Optimal Stretch Intensity For Flexibility of Hamstrings; Hand Held Dynamometer and Verbal Rating Scale

  • Choi, Bong-sam
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.38-45
    • /
    • 2017
  • Background: To improve muscle flexibility, static stretch is the most common type and is considered safe and effective for improving overall flexibility of muscles. During the stretch, the intensity is more likely to be determined by the degree of an athlete's pain and practitioner's skills rather than quantitative measures of stretch. It is necessary to determine the optimal intensity for the stretch. Objects: The purpose of this study is to explore the relationship between hand held dynamometer (HHD) and verbal rating scale (VRS) in comparison of the effects of continuance time on active (walking) and inactive (sitting) movement after static stretch. Methods: A cross-sectional study was conducted with a sample (n=62) recruited from a university. Participants were randomly assigned to 2 different groups (n=31 for each group) based on participants' positions either remaining in sitting or freely walking around for a series of re-assessments. Data was collected at pre-warm up, pre-stretch, post-stretch, and additional assessments at the time of 3, 6, 9, 12, 15, 20 and 30 minutes after the stretch. Results: Relationship between VRS and HHD scores represents very weak correlation (Spearman's p=-.16, p>.05). Pearson's correlation analysis was conducted following the logarithmic transformation of the two scores. Pearson's correlation after the transformation still showed a very low relationship and a poor linear relationship between the two scores (Pearson's r=-.18, p>.05). Conclusion: The optimal intensity for stretch cannot be solely determined by the subjective pain perception. The objective measurement such as HHD could be used in conjunction with the pain perception.

Development of Power Supply for Voltage-Adaptable Converter to Drive Linear Amplifiers with Variable Loads (가변부하를 갖는 선형 증폭기를 구동하기 위한 전압적응 변환기용 전력공급기 개발)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.251-257
    • /
    • 2014
  • An actuator system is a type of motor designed to control a mechanism operated by a source of energy, in the form of an electric current by converting energy into some kind of motion. As audio actuators, transforming electric voltage signal into audio signal, speakers and amplifiers are commonly used. In applications of industry, high output power systems are required. For these systems to generate high-quality output, it is essential to control output impedance of audio systems. We have developed an adaptable power supply for driving active amplifier systems with variable loads. Depending on the changing values of resistance of the speaker which produces audible sound by transforming electric voltage signal, the power supply source of the active amplifier can generate the maximum power delivered to the speaker by an adaptable change of loads. The amplifier is well protected from the abrupt increment of peak current and an excess of current flow.

Miniature PZT actuated microdrive for chronic neural recording in small animals (신경신호 기록을 위한 PZT기반 마이크로 드라이브)

  • Park, Sang-Kyu;Park, Hyun-Jun;Park, Suk-Ho;Kim, Byung-Kyu;Shin, Hee-Sub;Lee, Suk-Chan;Kim, Hui-Su;Kim, Eun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.38-40
    • /
    • 2005
  • Microdrive with high precision and light mass enough to install on mouse head was fabricated for recording the reliable signal of neuron cell to understand the brain study. The proposed microdrive has three H-form PZT actuators and its guide structure. The microdrive operation principle is based on the well known inchworm principle. The synchronization of three PZT actuators is able to produce the linear motion along the guide structure. Our proposed microdrive has a precise accuracy of about 100nm and a long stroke of about 5mm. The electrode which is used for the recording of the action potential of the neuron cell was fixed at one of PZT actuators. The proposed microdrive was suited to acquisition of signals from in vivo extra-cellular single-unit recoding. On the condition of the anesthetized mouse, the single-unit signals could be recorded by using the proposed microdrive. In addition, applying the PZT microdrive to an alert mouse, we try to implant it on a mouse brain skull to explore single neuron firing.

  • PDF

Analysis of Dynamic Stability of Limit-cycle Navigation Method (Limit-cycle 항법의 동역학적 안정성 분석)

  • Kim, Dong-Han;Kang, Soo-Hyeok;Lee, Eun-Jin;Ko, Kuk-Won;Nam, Sang-Yep
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.33-41
    • /
    • 2009
  • Because the stability of obstacle avoidance ability is important for the safe operation of mobile robots, this paper deals with the analysis of dynamic stability of Limit-cycle navigation method that was proposed by authors. Limit-cycle navigation method is fast and easy to implement for fast moving mobile robots using limit-cycle characteristics of the 2nd-order nonlinear function. It can be applied to robots in dynamically changing environment such as the robot soccer. By adjusting the radius of the motion circle and the direction of the obstacle avoidance, the mobile robot can avoid the collision with obstacles and move to the destination point. The stability of Limit-cycle navigation method is analyzed with a linear model. To demonstrate the effectiveness and applicability, it is applied to the robot soccer Simulations and real experiments ascertain the merits of the proposed method.

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures in a HDD (유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석)

  • Han, Jaehyuk;Jang, Gunhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.251-258
    • /
    • 2005
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings (HDB) in an HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Reynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigen value problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Extended Adaptive Spatio-Temporal Auto-Regressive Model for Video Sequence (동영상에서의 확장된 시공간 적응적 Auto-regressive 모델의 연구)

  • Doo, Seok-Joo;Kang, Moon-Gi
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.54-59
    • /
    • 1999
  • In this paper, a generalized auto-regressive(AR) model is proposed for linear prediction based on adaptive spatio-temporal support region(ASTSR). The conventional AR model suffers from the drawback that the prediction error increases in the edge region because the rectangular support region of the edge does not satisfy the stationary assumption. Thus, the proposed approach puts an emphasis on the formulation of a spatio-temporally adaptive support region for the AR model, called ASTSR. The ASTSR consists of two parts: the adaptive spatial support region(ASSR) connected with edges and the adaptive temporal support region(ATSR) related to temporal discontinuities. The AR model based on ASTSR not only produces more accurate model parameters but also reduces the computational complexity in the motion picture restoration.

  • PDF

Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices (회전 마찰형 제진장치의 이력특성에 대한 실험적 연구)

  • Park, Jin-Young;Han, Sang Whan;Moon, Ki-Hoon;Lee, Kang Seok;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.

Design of Oceanography Buoy - Part II: Mooring System (해양관측용 부이의 설계 건전성 평가 - Part II: 계류시스템 구조건전성 평가)

  • Keum, Dong-Min;Kim, Tae-Woo;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The purpose of the present study was to evaluate the safety under extreme environmental conditions and the dynamic safety under service environment conditions, of oceanographic buoy mooring systems consisting of a variety of materials, including chain, wire rope, nylon rope, and polypropylene rope. For the static safety assessment of a mooring system, after the calculation of external forces and the division of a mooring system into finite elements, the numerical integral was conducted to yield the elemental static tension until satisfying the geometrical convergence condition. To evaluate the dynamic safety, various processes were considered, including data collection about the anticipated areas for mooring, a determination of the parameters for the interpretation, the interpretation of the dynamic characteristics based on an analytic equation that takes into account the heave motion effect of a buoy hull and a mooring system, and a fatigue analysis of the linear cumulative damage. Based on the analysis results, a supplementary proposal for a wire rope that has a fracture in an actual mooring area was established.

Development of New Probabilistic Seismic Hazard Analysis and Seismic Coefficients of Korea Part II: Derivation of Probabilistic Site Coefficients (신(新) 확률론적 지진분석 및 지진계수 개발 Part II: 확률론적 지진계수 도출)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Lee, Hyunwoo;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.111-115
    • /
    • 2009
  • In Korea, the probabilistically developed seismic hazard maps are used with deterministically derived seismic site coefficients in developing the design response spectrum of a specific site. Even though the seismic hazard maps and seismic site coefficients are incompatible, the current design code ignores such incompatibility. If the seismic hazard map and seismic coefficients are both developed in identical probabilistic framework, such problems can be solved. Unfortunately, the available method cannot be use to derive "true" probabilistic site coefficients. This study uses the ground motion time histories, which were developed as the result of a new probabilistic seismic hazard analysis in the companion paper, as input motions in performing one-dimensional equivalent linear site response analyses, from which the uniform hazard response spectra are generated. Another important characteristic of the hazard response spectra are that the uncertainties and randomness of the ground properties are accounted for. The uniform hazard spectra are then used to derive probabilistic site coefficients. Comparison of probabilistic and deterministically site coefficients demonstrate that there is a distinct discrepancy between two coefficients.

  • PDF