• Title/Summary/Keyword: Linear matrix inequalities (LMIs)

Search Result 155, Processing Time 0.025 seconds

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

Novel Results for Global Exponential Stability of Uncertain Systems with Interval Time-varying Delay

  • Liu, Yajuan;Lee, Sang-Moon;Kwon, Oh-Min;Park, Ju H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1542-1550
    • /
    • 2013
  • This paper presents new results on delay-dependent global exponential stability for uncertain linear systems with interval time-varying delay. Based on Lyapunov-Krasovskii functional approach, some novel delay-dependent stability criteria are derived in terms of linear matrix inequalities (LMIs) involving the minimum and maximum delay bounds. By using delay-partitioning method and the lower bound lemma, less conservative results are obtained with fewer decision variables than the existing ones. Numerical examples are given to illustrate the usefulness and effectiveness of the proposed method.

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

Robust Output-Tracking Control of Uncertain Takagi-Sugeno Fuzzy Systems

  • 이호재;박진배;정근호;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • A systematic output-tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm-bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities (LMIs). A stability condition on the traversing time-instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design method.

  • PDF

Stability Analysis and Stabilization for Neutral Networked Control System (뉴트럴 네트워크 제어 시스템의 안정도 분석 및 퍼지 제어기 설계)

  • Song, Min-Kook;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.159-164
    • /
    • 2010
  • This paper focuses on the stability analysis and stabilization for networked control system with neutral type of time-delay. By utilizing the delay partitioning idea, new stability criteria are proposed in terms of linear matrix inequalities(LMIs). These conditions are developed based on the Lyapunov-Krasovskii functionals. Based on the derived criteria, a sufficient condition for te solvability of this problem is obtained in terms of linear matrix inequality without decomposing the original system matrices. Also, it is shown that the proposed controller design method is general for networked control systems. Finally, illustrative examples are presented to show the applicability of the proposed method.

Multirate Sampled-Data Control System: Optimal Digital Redesign Approach (멀티레이트 샘플치 시스템: 최적 디지털 재설계 기법)

  • Kim, Do-Wan;Park, Jin-Bae;Jang, Kwon-Kyu;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.708-710
    • /
    • 2004
  • This paper studies a multirate sampled-data control for LTI systems by using the digital redesign (DR) method. In this note, to well tackle the problem associated with both the state matching and the stabilization, our nobel strategy is to minimize the linear quadratic cost function. The main features of the proposed method are that i) the delta-operator-based descretization method is applied to improve the state-matching performance in the fast sampling limit and/or the large input multiplicity; ii) the proposed multirate control scheme can improve the state-matching performance in the long sampling limit; iii) some sufficient conditions that guarantee the stability of the closed-loop discrete-time system and provide a guarantee cost for the cost function can be formulated in the LMIs format; and iv) an optimal sampled-data controller in the sense of minimizing the upper bound of the cost function is also given by means of an LMI optimization procedure.

  • PDF

Robust Gain Scheduling Based on Fuzzy Logic Control and LMI Methods (퍼지논리제어와 LMI기법을 이용한 강인 게인 스케줄링)

  • Chi, Hyo-Seon;Koo, Kuen-Mo;Lee, Hungu;Tahk, Min-Jea;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1162-1170
    • /
    • 2001
  • This paper proposes a practical gain-scheduling control law considering robust stability and performance of Linear Parameter Varying(LPV) systems in the presence of nonlinearities and uncertainties. The proposed method introduces LMI-based pole placement synthesis and also associates with a recently developed fuzzy control system based on Takagei-Sugenos fuzzy model. The sufficient conditions for robust controller design of linearized local dynamics and robust stabilization of fuzzy control systems are reduced to a finite set of Linear Matrix inequalities(LMIs) and solved by using co-evolutionary algorithms. The proposed method is applied to the longitudinal acceleration control of high performance aircraft with linear and nonlinear simulations.

  • PDF

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

Estimation of the Asymptotic Stability Region for a Mismatched Uncertain Variable Structure System with a Bounded Controller (크기가 제한된 제어기를 갖는 비정합 불확실성의 가변구조 시스템을 위한 점근 안정 영역 추정)

  • Choi, Han-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.600-603
    • /
    • 2007
  • We propose a method to estimate the asymptotic stability region(ASR) of a mismatched uncertain variable structure system with a bounded controller. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the quadratic stability of the closed-loop control system in the estimated ASR. We also give a simple LMI-based algorithm for estimating the ASR. Finally, we give a numerical example in order to show the effectiveness of our method.

A Design Methodology for CNN-based Associative Memories (연상 메모리 기능을 수행하는 셀룰라 신경망의 설계 방법론)

  • Park, Yon-Mook;Kim, Hye-Yeon;Park, Joo-Young;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.463-472
    • /
    • 2000
  • In this paper, we consider the problem of realizing associative memories via cellular neural network(CNN). After introducing qualitative properties of the CNN model, we formulate the synthesis of CNN that can store given binary vectors with optimal performance as a constrained optimization problem. Next, we observe that this problem's constraints can be transformed into simple inequalities involving linear matrix inequalities(LMIs). Finally, we reformulate the synthesis problem as a generalized eigenvalue problem(GEVP), which can be efficiently solved by recently developed interior point methods. Proposed method can be applied to both space varying template CNNs and space-invariant template CNNs. The validity of the proposed approach is illustrated by design examples.

  • PDF